Tsao Chieh, Ling Haonan, Hinkle Alex, Chen Yifan, Jha Keshav Kumar, Yan Zhen-Li, Utzat Hendrik
Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Nanotechnol. 2025 Aug 20. doi: 10.1038/s41565-025-01992-3.
Quantum optics has led to important advancements in our ability to prepare and detect correlations between individual photons. Its principles are increasingly translated into nanoscale characterization tools, furthering methods in spectroscopy, microscopy and metrology. In this Review, we discuss the rapid progress in this field driven by advanced technologies of single-photon detectors and quantum-light sources, including time-resolved single-photon counting cameras, superconducting nanowire single-photon detectors and entangled photon sources of increasing brightness. We emphasize emerging applications in super-resolution microscopy, measurements below classical noise limits and photon-number-resolved spectroscopy-a powerful paradigm for the characterization of nanoscale electronic materials. We conclude by discussing key technological challenges and future opportunities in materials science and bionanophotonics alike.
量子光学在我们制备和探测单个光子之间相关性的能力方面取得了重要进展。其原理正越来越多地转化为纳米级表征工具,推动了光谱学、显微镜学和计量学方法的发展。在本综述中,我们讨论了由单光子探测器和量子光源等先进技术推动的该领域的快速进展,包括时间分辨单光子计数相机、超导纳米线单光子探测器以及亮度不断提高的纠缠光子源。我们强调了超分辨率显微镜、低于经典噪声极限的测量以及光子数分辨光谱学等新兴应用——这是一种用于表征纳米级电子材料的强大范例。我们通过讨论材料科学和生物纳米光子学中的关键技术挑战和未来机遇来结束本文。