文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测原发性低级别胶质瘤预后和免疫特征的免疫相关基因特征的系统分析

Systematic Analysis of an Immune-Related Gene Signature for Predicting Prognosis and Immune Characteristics in Primary Lower Grade Glioma.

作者信息

Hou Liubing, Tian Lei, Li Jiayuan, Zhang Zizhou, Han Xuetao, Zhou Huandi, Xue Xiaoying

机构信息

Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

出版信息

Biomed Res Int. 2025 Aug 12;2025:6180391. doi: 10.1155/bmri/6180391. eCollection 2025.


DOI:10.1155/bmri/6180391
PMID:40838069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12364596/
Abstract

Immune-related genes (IRGs) have been increasingly recognized as critical determinants in the multistage processes of cancer development and progression. However, the functional roles of IRGs in the incidence and progression of LGG remain to be studied. This study is aimed at establishing a robust IRGs signature through systematic bioinformatics analysis, followed by an in-depth investigation of the molecular mechanisms underlying its functional roles. A key objective is to dissect the intricate interplay between IRGs expression patterns and the composition/functional orientation of tumor-infiltrating immune cells inside the tumor microenvironment. Furthermore, our findings are aimed at providing novel evidence to facilitate molecular diagnosis and advance immunotherapeutic strategies for LGG. RNA sequencing datasets, accompanied by detailed and pertinent clinical information pertinent to LGG, were meticulously retrieved from databases including TCGA and CGGA. To measure the levels of immune cell distribution across the specimens, we employed the sophisticated ssGSEA, which incorporated 29 immune infiltration-related information, enabling stratification of cases into immunity-low (immunity_L) and immunity-high (immunity_H) clusters. This classification provided crucial insights for understanding the immune landscape of LGG and its potential clinical implications. To further investigate, we identified differentially expressed IRGs by intersecting the list of DEGs with the IRGs curated from the ImmPort website. Subsequent feature selection employed Cox proportional hazards regression and LASSO regression to derive a prognostic IRGs signature in the TCGA cohort. This model facilitated risk stratification of patients into low-risk and high-risk subgroups. The established signature's predictive efficacy was rigorously validated in the CGGA cohort through comprehensive analytical approaches. This included Kaplan-Meier survival analysis for prognostic stratification, time-dependent receiver operating characteristic (ROC) curve construction for quantifying predictive accuracy, principal component analysis (PCA) for visualizing sample distribution patterns, and subgroup stratification to assess consistency across clinical variables. Additionally, ssGSEA was utilized to profile the TME, and correlation analyses were performed between the IRG-derived risk score and immune checkpoint expression levels. Finally, we selected CXCL10, ICAM1, IL18, ITGAL, SOCS3, and TLR3 to establish a six-gene IRGs signature for LGG. Based on this feature, we divided patients into low- and high-risk subgroups and found that high-risk patients consistently exhibited shorter OS. Notably, the risk score based on this signature emerged as an independent predictor of OS. TME analysis showed more immune infiltration in the high-risk subgroup. Correlation analysis further revealed a strong positive association between the risk score and TIM3 expression in both TCGA and CGGA datasets, with significantly higher TIM3 expression in the high-risk group. Individual analyses of these six genes revealed that elevated expression levels of CXCL10, ICAM1, IL18, ITGAL, SOCS3, and TLR3 were detected in tumor tissues compared to adjacent normal tissues. Notably, overexpression of these immunoregulatory genes demonstrated a significant correlation with unfavorable clinical outcomes in patients' survival analysis. Similar results were obtained in the tissue samples validation conducted at our center. The study developed an innovative signature encompassing six IRGs that accurately predicts prognosis, offers potential for identifying prognostic biomarkers, and may guide individualized immunotherapy for LGG.

摘要

免疫相关基因(IRGs)在癌症发生发展的多阶段过程中已日益被视为关键决定因素。然而,IRGs在低级别胶质瘤(LGG)的发生和进展中的功能作用仍有待研究。本研究旨在通过系统的生物信息学分析建立一个可靠的IRGs特征,随后深入研究其功能作用背后的分子机制。一个关键目标是剖析IRGs表达模式与肿瘤微环境中肿瘤浸润免疫细胞的组成/功能方向之间的复杂相互作用。此外,我们的研究结果旨在提供新的证据,以促进LGG的分子诊断并推进免疫治疗策略。从包括TCGA和CGGA在内的数据库中精心检索了RNA测序数据集以及与LGG相关的详细且相关的临床信息。为了测量各样本中免疫细胞的分布水平,我们采用了复杂的单样本基因集富集分析(ssGSEA),该方法纳入了29个免疫浸润相关信息,能够将病例分层为免疫低(immunity_L)和免疫高(immunity_H)簇。这种分类为理解LGG的免疫格局及其潜在临床意义提供了关键见解。为了进一步研究,我们通过将差异表达基因(DEGs)列表与从ImmPort网站整理的IRGs进行交叉,鉴定出差异表达的IRGs。随后的特征选择采用Cox比例风险回归和LASSO回归,以在TCGA队列中得出一个预后IRGs特征。该模型有助于将患者分为低风险和高风险亚组。通过综合分析方法在CGGA队列中严格验证了所建立特征的预测效力。这包括用于预后分层的Kaplan-Meier生存分析、用于量化预测准确性的时间依赖性受试者工作特征(ROC)曲线构建、用于可视化样本分布模式的主成分分析(PCA)以及用于评估临床变量一致性的亚组分层。此外,利用ssGSEA对肿瘤微环境进行分析,并在IRG衍生的风险评分与免疫检查点表达水平之间进行相关性分析。最后,我们选择CXCL10、ICAM1、IL18、ITGAL、SOCS3和TLR3建立了一个用于LGG的六基因IRGs特征。基于此特征,我们将患者分为低风险和高风险亚组,发现高风险患者的总生存期(OS)始终较短。值得注意的是,基于该特征的风险评分成为OS的独立预测因子。肿瘤微环境分析显示高风险亚组中有更多的免疫浸润。相关性分析进一步揭示,在TCGA和CGGA数据集中,风险评分与TIM3表达之间存在强正相关,高风险组中TIM3表达显著更高。对这六个基因的单独分析显示,与相邻正常组织相比,肿瘤组织中CXCL10、ICAM1、IL18、ITGAL、SOCS3和TLR3的表达水平升高。值得注意的是,在患者生存分析中,这些免疫调节基因的过表达与不良临床结果显著相关。在我们中心进行的组织样本验证中也获得了类似结果。该研究开发了一种创新的特征包含六个IRGs,可准确预测预后,为识别预后生物标志物提供了潜力,并可能指导LGG的个体化免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/2705af208708/BMRI2025-6180391.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/e377b1d4c049/BMRI2025-6180391.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/64fadecaf6f2/BMRI2025-6180391.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/8e3b47ca2dfa/BMRI2025-6180391.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/e76e10abf98e/BMRI2025-6180391.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/20d36f28f85f/BMRI2025-6180391.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/3d420a8fc5c5/BMRI2025-6180391.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/bcf7c59afa05/BMRI2025-6180391.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/27b748311cb0/BMRI2025-6180391.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/99c45077bc0e/BMRI2025-6180391.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/2705af208708/BMRI2025-6180391.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/e377b1d4c049/BMRI2025-6180391.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/64fadecaf6f2/BMRI2025-6180391.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/8e3b47ca2dfa/BMRI2025-6180391.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/e76e10abf98e/BMRI2025-6180391.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/20d36f28f85f/BMRI2025-6180391.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/3d420a8fc5c5/BMRI2025-6180391.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/bcf7c59afa05/BMRI2025-6180391.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/27b748311cb0/BMRI2025-6180391.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/99c45077bc0e/BMRI2025-6180391.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ea/12364596/2705af208708/BMRI2025-6180391.010.jpg

相似文献

[1]
Systematic Analysis of an Immune-Related Gene Signature for Predicting Prognosis and Immune Characteristics in Primary Lower Grade Glioma.

Biomed Res Int. 2025-8-12

[2]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[3]
Identification of hub six interferon alpha response genes and immune cell infiltration characteristics in low-grade glioma.

Sci Rep. 2025-7-12

[4]
Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patients.

Front Immunol. 2025-8-6

[5]
Characterization of novel anoikis-related genes as prognostic biomarkers and key determinants of the immune microenvironment in esophageal cancer.

Front Immunol. 2025-7-11

[6]
Construction of a Prognostic Model for Mitochondria and Macrophage Polarization Correlation in Glioma Based on Single-Cell and Transcriptome Sequencing.

CNS Neurosci Ther. 2024-11

[7]
Anoikis-related lncRNA signature predicts prognosis and is associated with immune infiltration in hepatocellular carcinoma.

Anticancer Drugs. 2024-6-1

[8]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

[9]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

[10]
High ELK3 expression is associated with the wild type IDH1 in glioma and enhances infiltration of M2 macrophages.

Int Immunopharmacol. 2025-8-28

本文引用的文献

[1]
Immune-based subgroups uncover diverse tumor immunogenicity and implications for prognosis and precision therapy in acute myeloid leukemia.

Front Immunol. 2024

[2]
Leveraging an immune cell signature to improve the survival and immunotherapy response of lung adenocarcinoma.

J Cancer. 2024-1-1

[3]
Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications.

Front Oncol. 2022-11-23

[4]
ICAM1-Targeting Theranostic Nanoparticles for Magnetic Resonance Imaging and Therapy of Triple-Negative Breast Cancer.

Int J Nanomedicine. 2022

[5]
GSK343, an Inhibitor of Enhancer of Zeste Homolog 2, Reduces Glioblastoma Progression through Inflammatory Process Modulation: Focus on Canonical and Non-Canonical NF-κB/IκBα Pathways.

Int J Mol Sci. 2022-11-11

[6]
TLR3 serves as a novel diagnostic and prognostic biomarker and is closely correlated with immune microenvironment in three types of cancer.

Front Genet. 2022-11-7

[7]
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019.

Neuro Oncol. 2022-10-5

[8]
Simultaneous Increase in Serum Levels of IL-37 and IL-18 Binding Protein In Low-Grade and High-Grade Brain Tumors.

Asian Pac J Cancer Prev. 2022-8-1

[9]
Construction and validation of a glioblastoma prognostic model based on immune-related genes.

Front Neurol. 2022-7-28

[10]
SOCS3 Acts as an Onco-immunological Biomarker With Value in Assessing the Tumor Microenvironment, Pathological Staging, Histological Subtypes, Therapeutic Effect, and Prognoses of Several Types of Cancer.

Front Oncol. 2022-5-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索