Pastor-Arbulú Paulo, Rodríguez-Delfín Alfredo
Facultad de Ciencias, Centro de Investigación de Hidroponía y Nutrición Mineral, Universidad Nacional Agraria La Molina, Lima, Peru.
Centro de Investigación de Hidroponía y Nutrición Mineral, Universidad Nacional Agraria La Molina, Lima, Peru.
Front Plant Sci. 2025 Aug 5;16:1639002. doi: 10.3389/fpls.2025.1639002. eCollection 2025.
In the context of increasing pressure on agricultural resources, hydroponic systems such as the nutrient film technique (NFT) are gaining prominence for their ability to optimize water use and space efficiency, and crop productivity in controlled environments. Lettuce ( L.), a high-value leafy vegetable, is a key cash crop in controlled-environment agriculture. Light quality and intensity -critical drivers of plant physiology- require constant monitoring in soilless systems to ensure consistent performance. However, the interaction effects of NFT system design and cultivar selection on physiological behavior and yield stability remain underexplored.
This study evaluated the growth, yield, and physiological responses of two lettuce cultivars, Tropicana and Starfighter, cultivated in three NFT configurations: module I (8-channel) with a horizontal layout; and module II (13-channel) and module III (10-channel), both with pyramidal layouts. Although all the treatments were exposed to similar microenvironmental conditions, the photosynthetic photon flux density (PPFD) was monitored throughout the crop cycle to maintain light uniformity. Agronomic performance was evaluated through biometric parameters in roots, stems, leaves and heads, and the yield was calculated per unit area; while the physiological responses included measurements of relative and total chlorophyll content and nitrate reductase enzymatic activity.
Tropicana generally outperformed Starfighter, particularly in modules II and III, which also supported higher pigment accumulation and improved nitrogen metabolism across both cultivars. The highest yields were achieved by Tropicana in modules II (14.14 kg·m) and III (13.96 kg·m), closely followed by Starfighter in module II (13.45 kg·m). These findings highlight how strategic integration of system configuration and cultivar selection can increase physiological efficiency, stabilize yields, and promote sustainability in hydroponic lettuce production.
在农业资源压力不断增加的背景下,诸如营养液膜技术(NFT)之类的水培系统因其在可控环境中优化水资源利用、空间效率和作物生产力的能力而日益受到关注。生菜(L.)作为一种高价值叶菜类蔬菜,是可控环境农业中的关键经济作物。光质和光强是植物生理的关键驱动因素,在无土栽培系统中需要持续监测以确保稳定的性能。然而,NFT系统设计和品种选择对生理行为和产量稳定性的交互作用仍未得到充分研究。
本研究评估了两个生菜品种Tropicana和Starfighter在三种NFT配置下的生长、产量和生理反应:模块I(8通道),水平布局;模块II(13通道)和模块III(10通道),均为金字塔形布局。尽管所有处理都暴露在相似的微环境条件下,但在整个作物生长周期中监测光合光子通量密度(PPFD)以维持光照均匀性。通过对根、茎、叶和叶球的生物特征参数评估农艺性能,并计算单位面积产量;而生理反应包括相对叶绿素含量、总叶绿素含量和硝酸还原酶活性的测定。
Tropicana总体表现优于Starfighter,尤其是在模块II和III中,这两个模块也支持两个品种更高的色素积累和改善的氮代谢。Tropicana在模块II(14.14 kg·m)和III(13.96 kg·m)中产量最高,紧随其后的是模块II中的Starfighter(13.45 kg·m)。这些发现凸显了系统配置和品种选择的战略整合如何提高生理效率、稳定产量并促进水培生菜生产的可持续性。