Suppr超能文献

对约翰斯(2024年)所著《确定用于训练词汇语义和词汇组织计算模型的最佳环境信息》的勘误

Correction to "Determining the optimal environmental information for training computational models of lexical semantics and lexical organization" by Johns (2024).

出版信息

Can J Exp Psychol. 2025 Sep;79(3):296. doi: 10.1037/cep0000385.

Abstract

Reports an error in "Determining the optimal environmental information for training computational models of lexical semantics and lexical organization" by Brendan T. Johns (, 2024[Sep], Vol 78[3], 163-173; see record 2025-18520-001). In the article, the bar graph for Figure 4 is not the correct graph. The correct graph is provided in the erratum. (The following abstract of the original article appeared in record 2025-18520-001.) Experiential theories of cognition propose that the external environment shapes cognitive processing, shifting emphasis from internal mechanisms to the learning of environmental structure. Computational modelling, particularly distributional models of lexical semantics (e.g., Landauer & Dumais, 1997) and models of lexical organization (e.g., Johns, 2021a), exemplifies this, highlights the influence of language experience on cognitive representations. While these models have been successful, comparatively less attention has been paid to the training materials used to train these models. Recent research has explored the role of social/communicatively oriented training materials on models of lexical semantics and organization (Johns, 2021a, 2021b, 2023, 2024), introducing discourse- and user-centred text training materials. However, determining the optimal training materials for these two model types remains an open question. This article addresses this problem by using experiential optimization (Johns, Jones, & Mewhort, 2019), which selects the materials that maximize model performance. This study will use experiential optimization to compare user-based and discourse-based corpora in optimizing models of lexical organization and semantics, offering insight into pathways towards integrating cognitive models in these areas. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

布伦丹·T·约翰斯所著的《确定用于训练词汇语义和词汇组织计算模型的最佳环境信息》(2024年9月,第78卷第3期,163 - 173页;见记录2025 - 18520 - 001)报告了一处错误。在该文章中,图4的柱状图有误。勘误中提供了正确的图表。(原始文章的以下摘要出现在记录2025 - 18520 - 001中。)认知的经验理论提出,外部环境塑造认知加工,将重点从内部机制转移到环境结构的学习上。计算建模,特别是词汇语义的分布模型(例如,兰道尔和杜梅斯,1997年)以及词汇组织模型(例如,约翰斯,2021a),就是这一点的例证,凸显了语言经验对认知表征的影响。虽然这些模型已经取得成功,但相对较少关注用于训练这些模型的训练材料。最近的研究探讨了以社会/交际为导向的训练材料在词汇语义和组织模型中的作用(约翰斯,2021a、2021b、2023、2024),引入了以话语和用户为中心的文本训练材料。然而,确定这两种模型类型的最佳训练材料仍然是一个悬而未决的问题。本文通过使用经验优化方法(约翰斯、琼斯和梅霍特,2019年)来解决这个问题,该方法选择能使模型性能最大化的材料。本研究将使用经验优化方法在优化词汇组织和语义模型时比较基于用户和基于话语的语料库,为整合这些领域的认知模型的途径提供见解。(美国心理学会《心理学文摘数据库记录》(c) 2025,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验