围手术期癌症患者新辅助免疫治疗的免疫相关不良事件:一项机器学习驱动的、长达十年的信息学调查。
Immune-related adverse events of neoadjuvant immunotherapy in patients with perioperative cancer: a machine-learning-driven, decade-long informatics investigation.
作者信息
Guo Song-Bin, Liu Deng-Yao, Hu Rong, Zhou Zhen-Zhong, Meng Yuan, Li Hai-Long, Huang Wei-Juan, Tian Xiao-Peng
机构信息
Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
出版信息
J Immunother Cancer. 2025 Aug 21;13(8):e011040. doi: 10.1136/jitc-2024-011040.
Research on neoadjuvant immunotherapy (NAI) is increasingly focusing on immunotherapy-related adverse events (AEs). However, many unknowns remain in this field. Hence, through the machine learning (ML)-driven informatics analysis, this study aimed to profile the global decade-long scientific landscape of AEs of NAI and further reveal its critical issues and directions that deserve deeper exploration. During the past decade, the amount of research in the field of NAI safety has displayed a positive trend (annual growth rate: 30.2%), and it has achieved good global collaboration (international coauthorship: 17.43%). Using an unsupervised clustering algorithm, we identified six dominant research clusters, among which Cluster 1 (standardizing response assessment criteria for NAI to minimize its adverse reactions; average citation=34.86±95.48) had the highest impact and Cluster 6 (efficacy and safety of multiple therapy patterns combination) was an emerging research cluster (temporal central tendency=2022.43, research effort dispersion=0.52), with "irAEs" (s=0.4242 (95% CI: 0.01142 to 0.8371), R=0.4125, p=0.0453), "ICIs" (immune checkpoint inhibitors) (s=1.127 (95% CI: 0.5403 to 1.714), R=0.7103, p=0.0022), and "efficacy and safety" (s=0.5455 (95% CI: 0.1145 to 0.9764), R=0.5157, p=0.0193) showing significant overall growth. More importantly, further hotspot burst analysis indicated "ICI" and "efficacy and safety" as the emerging research focuses, demonstrating that scholars in the field are increasingly aware of the importance of balancing NAI efficacy and safety. In conclusion, this study presents ML-derived evidence that outlines the safety challenges of NAI and highlights the importance of balancing its efficacy and safety for its application in patients with perioperative cancer.
新辅助免疫疗法(NAI)的研究越来越关注免疫疗法相关的不良事件(AE)。然而,该领域仍存在许多未知因素。因此,本研究通过机器学习(ML)驱动的信息学分析,旨在勾勒出全球长达十年的NAI不良事件科学格局,并进一步揭示其值得深入探索的关键问题和方向。在过去十年中,NAI安全性领域的研究数量呈上升趋势(年增长率:30.2%),并且实现了良好的全球合作(国际合著率:17.43%)。我们使用无监督聚类算法识别出六个主要研究集群,其中集群1(规范NAI的反应评估标准以尽量减少其不良反应;平均被引次数=34.86±95.48)影响力最大,集群6(多种治疗模式联合的疗效和安全性)是一个新兴研究集群(时间中心趋势=2022.43,研究精力分散度=0.52),“免疫相关不良事件”(s=0.4242(95%置信区间:0.01142至0.8371),R=0.4125,p=0.0453)、“免疫检查点抑制剂”(ICIs)(s=1.127(95%置信区间:0.5403至1.714),R=0.7103,p=0.0022)以及“疗效和安全性”(s=0.5455(95%置信区间:0.1145至0.9764),R=0.5157,p=0.0193)呈现出显著的总体增长。更重要的是,进一步的热点爆发分析表明“ICI”和“疗效和安全性”是新兴的研究重点,这表明该领域的学者越来越意识到平衡NAI疗效和安全性的重要性。总之,本研究提供了基于机器学习的证据,勾勒出NAI的安全性挑战,并突出了在围手术期癌症患者中应用NAI时平衡其疗效和安全性的重要性。