Suppr超能文献

平衡伦理与统计:机器学习有助于在减少样本量的情况下,根据小鼠的特质焦虑对其进行高度准确的分类。

Balancing ethics and statistics: machine learning facilitates highly accurate classification of mice according to their trait anxiety with reduced sample sizes.

作者信息

Miedema Johannes, Lutz Beat, Gerber Susanne, Kovlyagina Irina, Todorov Hristo

机构信息

Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

出版信息

Transl Psychiatry. 2025 Aug 21;15(1):304. doi: 10.1038/s41398-025-03546-6.

Abstract

Understanding how individual differences influence vulnerability to disease and responses to pharmacological treatments represents one of the main challenges in behavioral neuroscience. Nevertheless, inter-individual variability and sex-specific patterns have been long disregarded in preclinical studies of anxiety and stress disorders. Recently, we established a model of trait anxiety that leverages the heterogeneity of freezing responses following auditory aversive conditioning to cluster female and male mice into sustained and phasic endophenotypes. However, unsupervised clustering required larger sample sizes for robust results which is contradictory to animal welfare principles. Here, we pooled data from 470 animals to train and validate supervised machine learning (ML) models for classifying mice into sustained and phasic responders in a sex-specific manner. We observed high accuracy and generalizability of our predictive models to independent animal batches. In contrast to data-driven clustering, the performance of ML classifiers remained unaffected by sample size and modifications to the conditioning protocol. Therefore, ML-assisted techniques not only enhance robustness and replicability of behavioral phenotyping results but also promote the principle of reducing animal numbers in future studies.

摘要

了解个体差异如何影响疾病易感性和对药物治疗的反应是行为神经科学的主要挑战之一。然而,在焦虑和应激障碍的临床前研究中,个体间变异性和性别特异性模式长期以来一直被忽视。最近,我们建立了一种特质焦虑模型,该模型利用听觉厌恶条件反射后僵住反应的异质性,将雌性和雄性小鼠分为持续和阶段性内表型。然而,无监督聚类需要更大的样本量才能得到可靠的结果,这与动物福利原则相矛盾。在这里,我们汇总了来自470只动物的数据,以训练和验证监督机器学习(ML)模型,以便以性别特异性方式将小鼠分类为持续和阶段性反应者。我们观察到我们的预测模型对独立动物批次具有很高的准确性和通用性。与数据驱动的聚类不同,ML分类器的性能不受样本量和条件协议修改的影响。因此,ML辅助技术不仅提高了行为表型结果的稳健性和可重复性,还促进了未来研究中减少动物数量的原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验