Ebrahimi Saman, Khorram Mahdis, Neri Barranco Raquel, Sanchez Rosario, Talchabhadel Rocky, Palmate Santosh S, Dominguez-Tuda Marisol, Racine Elizabeth F, Kumar Saurav
School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA.
Texas Water Resources Institute, Texas A&M University, College Station, Texas, 77843, USA.
Sci Data. 2025 Aug 22;12(1):1462. doi: 10.1038/s41597-025-05771-6.
This study introduces the crop and land cover land use (CLCLU) dataset, a 30 m resolution product providing annual maps of CLCLU across the transnational Middle Rio Grande (MRG) region, spanning both the U.S. and Mexico from 1994 to 2024. The model was trained using the Cropland Data Layer (CDL) on the US side. Dual-month (July and December) Landsat composites and a semantic segmentation model, MANet with ResNeXt-101 encoder, under four strategies were used to address sensor and temporal variability. This model architecture was chosen for its intrinsic ability to capture detailed spatial patterns and contextual dependencies through its attention-based design and ResNeXt-101 encoder, which demonstrated strong performance, particularly in generalizing across data-scarce regions in Mexico. The dataset achieved 97.10% overall accuracy and 78.85% mean Intersection over Union (mIoU), over validation process using a held-out CDL subset. Validation against NLCD and MCD12Q1-UMD confirmed high agreement. Data availability differences, minimal ground truth on the Mexican side, and cloud-related artifacts in early years led to some misclassification.
本研究介绍了作物与土地覆盖土地利用(CLCLU)数据集,这是一个30米分辨率的产品,提供了1994年至2024年跨美国和墨西哥的跨国中里奥格兰德(MRG)地区的CLCLU年度地图。该模型在美国一侧使用农田数据层(CDL)进行训练。采用双月(7月和12月)陆地卫星合成图像以及一个语义分割模型(带有ResNeXt - 101编码器的MANet),通过四种策略来处理传感器和时间变异性问题。选择这种模型架构是因为其具有通过基于注意力的设计和ResNeXt - 101编码器捕捉详细空间模式和上下文依赖性的内在能力,该编码器表现出强大的性能,特别是在墨西哥数据稀缺地区的泛化方面。在使用预留的CDL子集进行验证过程中,该数据集的总体准确率达到97.10%,平均交并比(mIoU)达到78.85%。与NLCD和MCD12Q1 - UMD的验证结果证实了高度一致性。数据可用性差异、墨西哥一侧的地面真值极少以及早期与云相关的伪影导致了一些误分类。