Suppr超能文献

基于笔迹图像,使用改进的LinkNet-GhostNet模型自动检测帕金森病。

Automated detection of Parkinson's disease using improved linknet-ghostnet model based on handwriting images.

作者信息

Pradeep P, Kamalakannan J

机构信息

Research Scholar, School of Computer Science and Engineering and Information System, Vellore Institute of Technology, Vellore, 632002, Tamil Nadu, India.

出版信息

Sci Rep. 2025 Aug 21;15(1):30731. doi: 10.1038/s41598-025-12636-w.

Abstract

Parkinson's disease (PD), is a neural disorder that damages movement control, which is reflected by different non-motor and motor symptoms. PD is caused by the weakening of neurons that produce dopamine in the brain, and it includes symptoms like bradykinesia (delay in movements), stiffness, and tremors. People frequently suffer from loss of motor skills when the illness worsens, which has a big influence on everyday tasks like writing. Micrographia is a disorder marked by very tiny, cramped handwriting and is one of the symptoms of PD. As a reflection of the disease's wider motor impairments, patients may observe that their handwriting gets harder to read and control. Detecting Parkinson's disease via handwriting images is one of the major research areas in the medical field. This research proposes an automated PD detection approach with handwriting images using an improved hybrid classification model. Primarily, a modified Wiener filter is employed for pre-processing the handwriting image. Then, modified PHOG, Deep features and Shape features are extracted. Finally, detection is performed using hybrid Improved LinkNet and Ghostnet models, termed (ILN-GNet), whose outcomes indicate if the individual is healthy or affected. From the analysis, a higher precision of 0.99 is achieved by the ILN-GNet, while existing methods attained low precision. Thus, these innovations significantly enhance early diagnosis and monitoring, enabling timely interventions before the disease progresses. Moreover, the proposed approach can contribute to remote healthcare solutions, by providing a scalable, and efficient tool for PD diagnosis.

摘要

帕金森病(PD)是一种损害运动控制的神经疾病,表现为不同的非运动和运动症状。PD是由大脑中产生多巴胺的神经元功能衰退引起的,其症状包括运动迟缓(动作延迟)、僵硬和震颤。病情恶化时,患者常常会出现运动技能丧失的情况,这对诸如书写等日常活动有很大影响。微书写症是一种以字迹非常小且紧凑为特征的病症,是PD的症状之一。作为该疾病更广泛运动障碍的一种体现,患者可能会发现自己的笔迹越来越难以辨认和控制。通过笔迹图像检测帕金森病是医学领域的主要研究方向之一。本研究提出了一种利用改进的混合分类模型,通过笔迹图像进行帕金森病自动检测的方法。首先,采用改进的维纳滤波器对手写图像进行预处理。然后,提取改进的方向梯度直方图(PHOG)、深度特征和形状特征。最后,使用混合的改进链接网络(ILN)和幽灵网络(Ghostnet)模型(称为ILN - GNet)进行检测,其结果可表明个体是否健康。分析结果显示,ILN - GNet实现了0.99的较高精度,而现有方法的精度较低。因此,这些创新显著提高了早期诊断和监测水平,能够在疾病进展之前及时进行干预。此外,所提出的方法可为远程医疗解决方案做出贡献,通过提供一种可扩展且高效的帕金森病诊断工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验