Melendo Irene, Borja Pilar, Fuertes Sara, Martín Antonio, Sicilia Violeta
Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Río Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain.
Inorg Chem. 2025 Sep 1;64(34):17523-17532. doi: 10.1021/acs.inorgchem.5c03110. Epub 2025 Aug 22.
The Pt(II) dinuclear compounds [{Pt(C^N)(μ-S^N)}] [S^NH: 2-mercapto-1-methylimidazol; HC^N= 1-naphthalen-2-yl-1-pyrazole (naph-pz, ); benzo[]quinoline (bzq, )] were obtained by reaction of the corresponding mononuclear precursor [Pt(C^N)Cl(S^NH)] (C^N: naph-pz , bzq ) with NEt. Then, and were reacted with aqueous HX (X: Cl, Br, I) in molar ratio 1:2 to give the corresponding oxidized derivatives [{Pt(C^N)(μ-S^N)X}] (X = Cl , Br , I ). Their X-ray structures showed shorter Pt-Pt distances in the Pt(III) complexes (. 2.7 Å) than in the Pt(II) ones (. 3.0 Å) in agreement with the existence of a Pt-Pt bond. The photophysical properties were studied experimentally and theoretically by DFT and TD-DFT. The Pt(II) complexes exhibit an emission in the visible region (640 nm , 685 nm ) of mostly excimeric ππ* and MMLCT [dσ*(Pt) → π* (C^N)] character respectively, while the Pt(III) complexes emit in the NIR-II region with maxima reaching up to 1215 nm. The XMMCT nature of these emissions justify the influence of both the axial ligand (X) and the overlap of the dz orbitals on their energies; the latter being affected by the nature of the C^N and the bridging ligand.
通过相应的单核前体[Pt(C^N)Cl(S^NH)](C^N:萘基吡唑(naph-pz)、苯并喹啉(bzq))与三乙胺反应,得到了Pt(II)双核化合物[{Pt(C^N)(μ-S^N)}] [S^NH:2-巯基-1-甲基咪唑;HC^N = 1-萘-2-基-1-吡唑(萘基吡唑,naph-pz);苯并喹啉(bzq)]。然后,[Pt(C^N)(μ-S^N)]与摩尔比为1:2的HX水溶液(X:Cl、Br、I)反应,得到相应的氧化衍生物[{Pt(C^N)(μ-S^N)X}](X = Cl、Br、I)。它们的X射线结构表明,与存在Pt-Pt键一致,Pt(III)配合物中的Pt-Pt距离(约2.7 Å)比Pt(II)配合物中的(约3.0 Å)短。通过密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对光物理性质进行了实验和理论研究。Pt(II)配合物在可见光区域(640 nm、685 nm)分别表现出主要为激基缔合物ππ和金属-金属-配体电荷转移[dσ(Pt)→π*(C^N)]特征的发射,而Pt(III)配合物在近红外二区发射,最大值可达1215 nm。这些发射的XMMCT性质证明了轴向配体(X)和dz轨道重叠对其能量的影响;后者受C^N和桥连配体性质的影响。