文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用随机阵列换能器提高特定受试者头部模型中经颅聚焦超声的靶向特异性:k波模拟研究

Improving Targeting Specificity of Transcranial Focused Ultrasound in Subject Specific Head Models Using a Random Array Transducer: A k-Wave Simulation Study.

作者信息

Li Zherui, Yu Kai, Kosnoff Joshua, He Bin

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

IEEE Access. 2025;13:113179-113193. doi: 10.1109/access.2025.3584245. Epub 2025 Jun 30.


DOI:10.1109/access.2025.3584245
PMID:40843191
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12366799/
Abstract

Transcranial focused ultrasound (tFUS) has emerged as a promising non-invasive modality for precision neuromodulation. However, the heterogeneous acoustic properties of the skull often induce phase aberrations that shift the ultrasound focus and compromise energy delivery. In this study, we developed and validated a phase-reversal based aberration correction method to enhance the targeting specificity of tFUS using a 128-element random array ultrasound transducer. Individual head models were constructed from T1-weighted magnetic resonance (MR) images and corresponding pseudo-computed tomography (pCT) data to accurately represent subject-specific skull geometries and the targeted left V5 (V5L) region. Acoustic simulations were conducted with the k-Wave toolbox by first acquiring free-field pressure waveforms and then recording the aberrated waveforms in the presence of the skull. The phase differences between these conditions were used to compute corrective delays for each transducer element. Quantitative evaluation using metrics such as focal overlap with the target region, axial focal positioning, and the delivered ultrasound energy demonstrated significant improvements: the overlap volume increased by 98.70%, mean axial positioning errors were reduced by up to 14.36%, and energy delivery to the target improved by 17.58%. We further demonstrated that the proposed approach outperforms the conventional ray-tracing methods. The results show that phase-reversal based aberration correction markedly increases the spatial targeting accuracy of tFUS and enhances the efficiency of focused ultrasound energy deposition for the customized random array transducer, paving a way for effective and personalized non-invasive neuromodulation therapies.

摘要

经颅聚焦超声(tFUS)已成为一种有前景的用于精确神经调节的非侵入性方法。然而,颅骨的异质声学特性常常会引起相位畸变,从而使超声焦点发生偏移并影响能量传递。在本研究中,我们开发并验证了一种基于相位反转的像差校正方法,以使用128元随机阵列超声换能器提高tFUS的靶向特异性。根据T1加权磁共振(MR)图像和相应的伪计算机断层扫描(pCT)数据构建个体头部模型,以准确呈现特定受试者的颅骨几何形状和靶向的左侧V5(V5L)区域。使用k-Wave工具箱进行声学模拟,首先获取自由场压力波形,然后记录存在颅骨时的畸变波形。这些条件之间的相位差用于计算每个换能器元件的校正延迟。使用诸如与目标区域的焦点重叠、轴向焦点定位和传递的超声能量等指标进行的定量评估显示出显著改善:重叠体积增加了98.70%,平均轴向定位误差最多降低了14.36%,向目标传递的能量提高了17.58%。我们进一步证明,所提出的方法优于传统的射线追踪方法。结果表明,基于相位反转的像差校正显著提高了tFUS的空间靶向准确性,并提高了定制随机阵列换能器的聚焦超声能量沉积效率,为有效且个性化的非侵入性神经调节治疗铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/c72b223e9b6f/nihms-2095946-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/a2b4b8d06a4f/nihms-2095946-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/e86c6e35485a/nihms-2095946-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/4c856659fdd5/nihms-2095946-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/8ef6c5ce7304/nihms-2095946-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/da8ab099c89f/nihms-2095946-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/c72b223e9b6f/nihms-2095946-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/a2b4b8d06a4f/nihms-2095946-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/e86c6e35485a/nihms-2095946-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/4c856659fdd5/nihms-2095946-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/8ef6c5ce7304/nihms-2095946-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/da8ab099c89f/nihms-2095946-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11e/12366799/c72b223e9b6f/nihms-2095946-f0010.jpg

相似文献

[1]
Improving Targeting Specificity of Transcranial Focused Ultrasound in Subject Specific Head Models Using a Random Array Transducer: A k-Wave Simulation Study.

IEEE Access. 2025

[2]
Improving Targeting Specificity of Transcranial Focused Ultrasound in Humans Using a Random Array Transducer: A k-Wave Simulation Study.

bioRxiv. 2025-5-9

[3]
Phase aberration simulation study of MRgFUS breast treatments.

Med Phys. 2016-3

[4]
Towards quantitative ionizing radiation acoustic imaging (iRAI) for radiation dose measurement: Validation from simulations to experiments.

Med Phys. 2025-9

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Longitudinal EEG-based assessment of neuroplasticity and adaptive responses to transcranial focused ultrasound stimulation.

J Neurosci Methods. 2025-10

[7]
Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates.

IEEE Trans Ultrason Ferroelectr Freq Control. 2022-1

[8]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[9]
A New Versatile System for 3D Steered LIFU Based on 2D Matrix Arrays.

Brain Connect. 2025-7-28

[10]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

本文引用的文献

[1]
Analgesic effect of simultaneously targeting multiple pain processing brain circuits in an aged humanized mouse model of chronic pain by transcranial focused ultrasound.

APL Bioeng. 2025-2-19

[2]
Low-intensity transcranial focused ultrasound suppresses pain by modulating pain-processing brain circuits.

Blood. 2024-9-5

[3]
Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention.

Nat Commun. 2024-6-11

[4]
Transcranial focused ultrasound (tFUS): a promising noninvasive deep brain stimulation approach for pain.

Neuropsychopharmacology. 2024-1

[5]
Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations.

Ultrasonics. 2023-12

[6]
A Review of Ultrasound Neuromodulation Technologies.

IEEE Trans Biomed Circuits Syst. 2023-10

[7]
Pseudo-CTs from T1-weighted MRI for planning of low-intensity transcranial focused ultrasound neuromodulation: An open-source tool.

Brain Stimul. 2023

[8]
S.M.A.R.T. F.U.S: Surrogate Model of Attenuation and Refraction in Transcranial Focused Ultrasound.

PLoS One. 2022

[9]
Transcranial ultrasound simulations: A review.

Med Phys. 2023-2

[10]
First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study.

Int J Hyperthermia. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索