Suppr超能文献

治疗性低温治疗前预测新生儿缺氧缺血性脑病不良结局的早期预后模型

Early Prognostic Model for Predicting Adverse Outcomes in Neonates with Hypoxic-Ischemic Encephalopathy before Therapeutic Hypothermia.

作者信息

Kurimoto Tomonori, Tokuhisa Takuya, Hayasaka Itaru, Ohashi Hiroshi, Yamamoto Tsuyoshi, Hirakawa Eiji, Maeda Takatsugu, Kamitomo Masato, Ibara Satoshi

机构信息

Department of Neonatology, Perinatal Medical Center, Kagoshima City Hospital, Kagoshima, Japan.

Department of Obstetrics and Gynecology, Perinatal Medical Center, Kagoshima City Hospital, Kagoshima, Japan.

出版信息

Ther Hypothermia Temp Manag. 2025 Aug 22. doi: 10.1177/21537658251370513.

Abstract

Hypoxic-ischemic encephalopathy (HIE) affects 1.3-1.7 per 1000 live births and remains a major cause of neurodevelopmental impairment (NDI). Despite therapeutic hypothermia (TH), nearly half of infants with moderate to severe HIE experience death or NDI. Identifying early prognostic indicators before TH initiation is crucial for improving management and outcomes. We conducted a retrospective case-control study of 144 infants with HIE treated with TH at Kagoshima City Hospital (2000-2022); 100 underwent developmental evaluations at 18 months. Clinical parameters, including amplitude-integrated EEG (aEEG), Thompson scores, and resuscitation details, were analyzed. Logistic regression identified predictors of adverse outcomes: death, cerebral palsy, or developmental quotient <70. Univariate analysis revealed significant predictors, including low Apgar scores, low umbilical artery pH, aEEG abnormalities, high Thompson scores, and resuscitation details. Multivariate regression identified three independent predictors: aEEG abnormalities (adjusted odds ratios [aOR] 7.1, 95% confidence interval [CI]: 1.3-38.2), Thompson score ≥12 (aOR 5.4, 95% CI: 1.5-18.7), and chest compressions (aOR 31.6, 95% CI: 4.3-231.6). We developed and derived early prognostic model from these predictors, assigning +2 points for aEEG abnormalities, +2 points for a Thompson score ≥12, and +3 points for chest compressions. A total score ≥4 achieved high sensitivity (70.4%) and specificity (90.4%), with an area under the curve of 0.87 (95% CI: 0.77-0.94). The early prognostic model may serve as an effective tool for early risk stratification in neonates with HIE before TH initiation, supporting individualized treatment decisions. This score could help identify high-risk neonates who may benefit from additional neuroprotective strategies.

摘要

缺氧缺血性脑病(HIE)在每1000例活产中影响1.3 - 1.7例,仍然是神经发育障碍(NDI)的主要原因。尽管有治疗性低温(TH),近一半的中重度HIE婴儿仍经历死亡或NDI。在开始TH之前确定早期预后指标对于改善管理和预后至关重要。我们对鹿儿岛市医院(2000 - 2022年)接受TH治疗的144例HIE婴儿进行了一项回顾性病例对照研究;其中100例在18个月时接受了发育评估。分析了包括振幅整合脑电图(aEEG)、汤普森评分和复苏细节在内的临床参数。逻辑回归确定了不良结局的预测因素:死亡、脑瘫或发育商<70。单因素分析揭示了显著的预测因素,包括低阿氏评分、低脐动脉pH值、aEEG异常、高汤普森评分和复苏细节。多因素回归确定了三个独立的预测因素:aEEG异常(调整后的优势比[aOR] 7.1,95%可信区间[CI]:1.3 - 38.2)、汤普森评分≥12(aOR 5.4,95% CI:1.5 - 18.7)和胸外按压(aOR 31.6,95% CI:4.3 - 231.6)。我们根据这些预测因素开发并推导了早期预后模型,aEEG异常计+2分,汤普森评分≥12计+2分,胸外按压计+3分。总分≥4具有高敏感性(70.4%)和特异性(90.4%),曲线下面积为0.87(95% CI:0.77 - 0.94)。早期预后模型可作为在开始TH之前对HIE新生儿进行早期风险分层的有效工具,支持个体化治疗决策。该评分有助于识别可能从额外神经保护策略中获益的高危新生儿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验