Suppr超能文献

由免疫衰退和增强产生的双稳态和复杂分岔图。

Bistability and complex bifurcation diagrams generated by waning and boosting of immunity.

作者信息

Scarabel Francesca, Polner Mónika, Wylde Daniel, Barbarossa Maria Vittoria, Röst Gergely

机构信息

School of Mathematics, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK.

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, Szeged, 6720, Hungary.

出版信息

J Math Biol. 2025 Aug 22;91(3):30. doi: 10.1007/s00285-025-02264-3.

Abstract

We investigate an epidemiological model that incorporates waning of immunity at the individual level and boosting of the immune system upon re-exposure to the pathogen. When immunity is fully restored upon boosting, the system can be expressed as an SIRS-type model with discrete and distributed delays. We conduct a numerical bifurcation analysis varying the boosting force and the maximum period of immunity (in the absence of boosting), while keeping other parameters fixed at values representative of a highly infectious disease like pertussis. The stability switches of the endemic equilibrium, identified numerically, are validated using an established analytical approach, confirming that the equilibrium is unstable in a bounded parameter region, and stable outside this region. Using recently developed continuation methods for models with discrete and distributed delays, we explore periodic solutions and their bifurcations. Our analysis significantly extends previous findings and reveals a rich dynamical landscape, including catastrophic bifurcations of limit cycles, torus bifurcations, and bistability regions where two stable periodic solutions coexist, differing in amplitude and period. These complex bifurcations have critical public health implications: perturbations—such as non-pharmaceutical interventions—can shift the system between attractors, leading to long-term consequences from short-term measures.

摘要

我们研究了一种流行病学模型,该模型纳入了个体层面的免疫衰退以及再次接触病原体时免疫系统的增强。当免疫在增强后完全恢复时,该系统可表示为一个具有离散和分布延迟的SIRS型模型。我们进行了数值分岔分析,改变增强力和免疫的最大持续时间(在无增强的情况下),同时将其他参数固定在代表像百日咳这样的高传染性疾病的值上。通过数值确定的地方病平衡点的稳定性切换,使用一种既定的分析方法进行了验证,证实该平衡点在一个有界参数区域内是不稳定的,而在该区域之外是稳定的。使用最近为具有离散和分布延迟的模型开发的延拓方法,我们探索了周期解及其分岔。我们的分析显著扩展了先前的研究结果,并揭示了一个丰富的动态图景,包括极限环的灾难性分岔、环面分岔以及两个稳定周期解共存的双稳区域,这两个周期解在幅度和周期上有所不同。这些复杂的分岔具有关键的公共卫生意义:诸如非药物干预等扰动可使系统在吸引子之间切换,导致短期措施产生长期后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94f2/12373696/c81438105036/285_2025_2264_Fig11_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验