Sangiogo-Gil Eduarda, Ibele Lea M, Bleyer Richard, González Leticia
University of Vienna, Institute of Theoretical Chemistry, Währinger Str. 17, Vienna A-1090, Austria.
Aix Marseille University, CNRS, ICR, Marseille 13397, France.
J Chem Theory Comput. 2025 Sep 9;21(17):8278-8290. doi: 10.1021/acs.jctc.5c00737. Epub 2025 Aug 22.
Surface hopping is a widely used method for simulating nonadiabatic dynamics, in which nuclear motion follows classical trajectories and electronic transitions occur stochastically. To ensure energy conservation during these transitions, atomic velocities must be adjusted. Traditional velocity rescaling methods either apply a uniform adjustment to atomic velocities, which can lead to size-consistency issues, or rely on nonadiabatic coupling vectors, which are computationally expensive and may not always be available. Here, we introduce two novel velocity rescaling methods that incorporate atomic contributions to electronic transitions, derived from the one-electron transition density matrix or the density difference between states for a given transition. The first method, , redistributes kinetic energy among atoms proportionally to their contributions to the electronic transition. This is achieved through a weighted scaling factor, computed from the population analysis of the one-electron transition density matrix or the density difference of the two states involved in the transition. The second method, , adjusts the velocities only of atoms whose contributions exceed a predefined threshold, preventing unnecessary energy redistribution to atoms with minimal involvement in the excitation. We validate these approaches through excited-state dynamics simulations of fulvene and 1-1,2,3-triazole. Our results show that excitation-weighted velocity rescaling closely reproduces the adjustments based on nonadiabatic coupling vectors for both fulvene and 1-1,2,3-triazole.
表面跳跃是一种广泛用于模拟非绝热动力学的方法,其中核运动遵循经典轨迹,电子跃迁随机发生。为了确保这些跃迁过程中的能量守恒,必须调整原子速度。传统的速度重标方法要么对原子速度进行统一调整,这可能会导致尺寸一致性问题,要么依赖非绝热耦合矢量,这在计算上很昂贵,而且可能并不总是可用。在这里,我们引入了两种新颖的速度重标方法,它们纳入了原子对电子跃迁的贡献,这些贡献源自单电子跃迁密度矩阵或给定跃迁的态间密度差。第一种方法, ,根据原子对电子跃迁的贡献比例在原子间重新分配动能。这通过一个加权缩放因子来实现,该因子由单电子跃迁密度矩阵的布居分析或跃迁所涉及的两个态的密度差计算得出。第二种方法, ,仅调整那些贡献超过预定义阈值的原子的速度,防止不必要地将能量重新分配给参与激发最少的原子。我们通过富烯和1,2,3 - 三唑的激发态动力学模拟验证了这些方法。我们的结果表明,激发加权速度重标对于富烯和1,2,3 - 三唑都能紧密重现基于非绝热耦合矢量的调整。