Bosque Jesús J, Martínez Jordan, Otero José García, Aguadé-Gorgorió Guim, Sanchez-Galan Javier E, Belmonte-Beitia Juan
Departament of de Applied Mathematics, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Panama.
Comput Biol Med. 2025 Sep;196(Pt C):110909. doi: 10.1016/j.compbiomed.2025.110909. Epub 2025 Aug 21.
Recent biological research has highlighted the relevance of myeloid-cell populations in glioma growth, with a particular role played by tumor-associated macrophages (TAMs), which comprise resident microglia and monocyte-derived macrophages. Additionally, radiation therapy, the most common treatment for gliomas, significantly alters the tumor microenvironment, affecting TAMs and contributing to tumor recurrence. Promising preclinical studies have identified and developed drugs targeting TAMs. The development and combined deployment of these therapies require in silico techniques that enable us to optimize their outcomes. To do so, we need mathematical models of glioma growth and therapy response that explicitly incorporate TAMs-an often overlooked component in existing models. Here, we present a dynamical model of glioma growth driven by tumor-immune interactions. The model was parametrized using published data from mice experiments, including responses to ionizing radiation. We used this model to investigate glioma progression under radiotherapy combined with three treatments targeting distinct aspects of TAM biology. Simulations revealed that anti-CD47 enhanced the otherwise weak phagocytic activity, extending the upper tail of the survival curve. α-CD49d, which limits monocyte trafficking after irradiation, offered consistent survival benefits across digital twins of mice. Finally, CSF-1R inhibitors, which block the primary growth factor regulating TAM function, resulted in the largest overall survival improvement in silico. Our results aligned well with experimental evidence, suggesting that the model may help inform the optimization of myeloid cell-targeted immunotherapies, including their timing, dosage, and combination with radiation therapy, with potential relevance for improving glioma treatment strategies.
最近的生物学研究强调了髓样细胞群体在胶质瘤生长中的相关性,肿瘤相关巨噬细胞(TAM)发挥了特殊作用,TAM包括常驻小胶质细胞和单核细胞衍生的巨噬细胞。此外,放射治疗是胶质瘤最常见的治疗方法,它会显著改变肿瘤微环境,影响TAM并导致肿瘤复发。有前景的临床前研究已经鉴定并开发了针对TAM的药物。这些疗法的开发和联合应用需要计算机技术,以便我们能够优化其效果。为此,我们需要明确纳入TAM的胶质瘤生长和治疗反应数学模型——TAM在现有模型中常常被忽视。在此,我们提出了一个由肿瘤-免疫相互作用驱动的胶质瘤生长动力学模型。该模型使用来自小鼠实验的已发表数据进行参数化,包括对电离辐射的反应。我们使用这个模型来研究在放射治疗联合针对TAM生物学不同方面的三种治疗方法下的胶质瘤进展。模拟结果显示,抗CD47增强了原本较弱的吞噬活性,延长了生存曲线的上尾。α-CD49d可限制辐射后单核细胞的迁移,在小鼠的数字双胞胎模型中提供了一致的生存益处。最后,集落刺激因子1受体(CSF-1R)抑制剂可阻断调节TAM功能的主要生长因子,在计算机模拟中使总体生存率得到最大改善。我们的结果与实验证据高度吻合,表明该模型可能有助于优化针对髓样细胞的免疫疗法,包括其时机、剂量以及与放射治疗的联合应用,对改善胶质瘤治疗策略具有潜在意义。