Suppr超能文献

热解碳加速了水稻土中溶解有机物的电子转移过程。

Pyrogenic carbon accelerated electron transfer process of dissolved organic matter in paddy soil.

作者信息

Wu Yufei, Ren Hao, He Ting, Cheng Chen, Zhang Jinshuo, Zhang Peng, Pan Bo

机构信息

Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.

Kunming Dianchi and Plateau Lakes Institute, Kunming 650500, China.

出版信息

Sci Total Environ. 2025 Aug 21;998:180275. doi: 10.1016/j.scitotenv.2025.180275.

Abstract

As a ubiquitous and stable phase of soil organic matter, pyrogenic carbon (PyC)-produced by the incomplete combustion of biomass during wildfire burning, fossil fuel consumption, and engineered manufacturing-exhibits exceptional electron-mediating capacity. Dissolved organic matter (DOM), a highly redox-active component in the environment, participates in many biogeochemical cycles and transformations through its electron transfer process. PyC can actively interact with DOM through adsorption and aggregation. Although both function as electron shuttles, their cooperative mechanisms remain poorly understood, particularly how PyC's dual electron transfer pathways (direct electron transfer and redox cycling) modulate DOM's electron shuttling. Here, we conducted paddy microcosm incubations in combination with electrochemical analyses to investigate the effect of PyC on DOM redox cycles. Results demonstrated that the electron transfer rate mediated jointly by DOM and PyC (1000 °C) was 14 times that of PyC (400 °C), showing positive correlations with both the conductivity and electron exchange capacity (EEC) of PyC. Further mechanistic study using anthraquinone-2,6-disulfonate (AQDS), a widely used analogue of the redox centers of DOM, revealed that the strong adsorption of AQDS on PyC (1000 °C) formed a redox continuum, in which the rapid direct electron transfer through the conductive PyC matrices accelerated the redox cycles of AQDS molecules and extended their availability for electron transfer. In contrast, PyC produced at lower temperature range (400 °C) did not exhibit similar kinetic promotion effect on AQDS electron transfer, which aligned with the low conductivity and EEC. This study has highlighted the combined electron transfer effect of PyC and DOM, emphasizing the importance of their biogeochemical redox interactions as well as their effects on nutrients and contaminants transformations in soil and aquatic ecosystems.

摘要

作为土壤有机质中普遍存在且稳定的相态,热解碳(PyC)是在野火燃烧、化石燃料消耗及工程制造过程中生物质不完全燃烧产生的,具有卓越的电子介导能力。溶解有机物(DOM)是环境中一种具有高度氧化还原活性的成分,通过其电子转移过程参与许多生物地球化学循环和转化。PyC可通过吸附和聚集与DOM发生积极相互作用。尽管二者都起到电子穿梭体的作用,但其协同机制仍知之甚少,尤其是PyC的双电子转移途径(直接电子转移和氧化还原循环)如何调节DOM的电子穿梭。在此,我们结合电化学分析进行了稻田微观培养实验,以研究PyC对DOM氧化还原循环的影响。结果表明,DOM和PyC(1000℃)共同介导的电子转移速率是PyC(400℃)的14倍,与PyC的电导率和电子交换容量(EEC)均呈正相关。使用蒽醌-2,6-二磺酸盐(AQDS,一种广泛使用的DOM氧化还原中心类似物)进行的进一步机理研究表明,AQDS在PyC(1000℃)上的强吸附形成了一个氧化还原连续体,其中通过导电PyC基质的快速直接电子转移加速了AQDS分子的氧化还原循环,并延长了其电子转移的可用性。相比之下,在较低温度范围(400℃)产生的PyC对AQDS电子转移未表现出类似的动力学促进作用,这与低电导率和EEC一致。本研究突出了PyC和DOM的联合电子转移效应,强调了它们在生物地球化学氧化还原相互作用中的重要性以及对土壤和水生生态系统中养分及污染物转化的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验