Suppr超能文献

用于奖励和情绪预测误差的可分离神经信号。

Separable neural signals for reward and emotion prediction errors.

作者信息

Heffner Joseph, Frömer Romy, Nassar Matthew R, FeldmanHall Oriel

机构信息

Cognitive and Psychological Sciences, Brown University, Providence, RI, USA.

Department of Psychology, Yale University, New Haven, CT, USA.

出版信息

Nat Commun. 2025 Aug 22;16(1):7849. doi: 10.1038/s41467-025-63135-5.

Abstract

Reinforcement learning models focus on reward prediction errors as the driver of behavior. However, recent evidence indicates that deviations from emotion expectations, termed affective prediction errors, also crucially shape behavior. Whether there is neural separability between emotion and reward signals remains unknown. We employ electroencephalography during social learning to investigate the neural signatures of reward and affective prediction errors. Behavioral results reveal that affective prediction errors are associated with choices when little is known about how a partner will behave. This behavioral evidence is mirrored neurally by engagement of separate event-related potentials. More specifically, the feedback-related negativity is largely and consistently indexed by reward prediction errors, while the P3b is more consistently tracked by affective prediction errors. The P3b in particular is linked to subsequent choices, highlighting the mechanistic influence of emotion during social learning. These findings present evidence for a neurobiologically viable emotion learning signal that is partially distinguishable, at both the behavior and neural levels, from reward.

摘要

强化学习模型将奖励预测误差视为行为的驱动因素。然而,最近的证据表明,与情感预期的偏差,即情感预测误差,也对行为起着至关重要的塑造作用。情感和奖励信号在神经层面上是否可分离仍然未知。我们在社会学习过程中采用脑电图来研究奖励和情感预测误差的神经特征。行为结果表明,当对伙伴的行为方式了解甚少时,情感预测误差与选择相关。这种行为证据在神经层面上表现为不同的事件相关电位的参与。更具体地说,反馈相关负波在很大程度上并始终由奖励预测误差标记,而P3b则更一致地由情感预测误差追踪。特别是P3b与后续选择相关联,突出了情感在社会学习过程中的机制性影响。这些发现为一种在神经生物学上可行的情感学习信号提供了证据,该信号在行为和神经层面上都与奖励部分可区分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验