Suppr超能文献

从图形衍生的汇总数据估计曲线下面积:标准方法与蒙特卡罗方法的系统比较

Estimating area under the curve from graph-derived summary data: a systematic comparison of standard and Monte Carlo approaches.

作者信息

Titensor Sean, Ebbert Joshua, Corte Karen Della, Corte Dennis Della

机构信息

Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA.

Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT, 84602, USA.

出版信息

BMC Med Res Methodol. 2025 Aug 22;25(1):197. doi: 10.1186/s12874-025-02645-8.

Abstract

BACKGROUND

Response curves are widely used in biomedical literature to summarize time-dependent outcomes, yet raw data are not always available in published reports. Meta-analysts must frequently extract means and standard errors from figures and estimate outcome measures like the area under the curve (AUC) without access to participant-level data. No standardized method exists for calculating AUC or propagating error under these constraints.

METHODS

We evaluate two methods for estimating AUC from figure-derived data: (1) a trapezoidal integration approach with extrema variance propagation, and (2) a Monte Carlo method that samples plausible response curves and integrates over their posterior distribution. We generated 3,920 synthetic datasets from seven functional response types commonly found in glycemic response and pharmacokinetic research, varying the number of timepoints (4–10) and participants (5–40). All response curves were normalized to a true AUC of 1.0.

RESULTS

The standard method consistently underestimated the true AUC, especially in curves with skewed or long-tailed structures. Monte Carlo method produced near-unbiased estimates with tighter alignment to the known AUC across all settings. Increasing the number of datapoints and participants improved performance for both methods, but the Monte Carlo approach retained robustness even under sparse conditions.

CONCLUSION

This is the first large-scale benchmarking of AUC estimation accuracy from graphically extracted data. The Monte Carlo method outperforms standard approaches in both accuracy and uncertainty quantification. We recommend its adoption in meta-analytic contexts where only figure-derived data are available and advocate for improved data sharing practices in primary publications.

摘要

背景

反应曲线在生物医学文献中被广泛用于总结随时间变化的结果,但已发表报告中并不总是能获取原始数据。荟萃分析人员常常必须从图表中提取均值和标准误差,并在无法获取参与者层面数据的情况下估计曲线下面积(AUC)等结果指标。在这些限制条件下,不存在计算AUC或传播误差的标准化方法。

方法

我们评估了两种从图表衍生数据估计AUC的方法:(1)一种采用极值方差传播的梯形积分方法,以及(2)一种对合理反应曲线进行采样并在其后验分布上进行积分的蒙特卡罗方法。我们从血糖反应和药代动力学研究中常见的七种功能反应类型生成了3920个合成数据集,改变时间点数量(4 - 10个)和参与者数量(5 - 40名)。所有反应曲线均归一化为真实AUC为1.0。

结果

标准方法始终低估真实AUC,尤其是在具有偏态或长尾结构的曲线中。蒙特卡罗方法产生的估计值几乎无偏,在所有设置下与已知AUC的一致性更高。增加数据点和参与者数量可提高两种方法的性能,但蒙特卡罗方法即使在数据稀疏的条件下仍保持稳健性。

结论

这是首次对从图形提取数据估计AUC的准确性进行大规模基准测试。蒙特卡罗方法在准确性和不确定性量化方面均优于标准方法。我们建议在仅可获取图表衍生数据的荟萃分析中采用该方法,并倡导在原始出版物中改进数据共享做法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc1b/12372245/f6514833cabf/12874_2025_2645_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验