Suppr超能文献

单核细胞增生李斯特菌对低温胁迫的转录反应揭示了在缺乏BKD和PrfA激活的情况下不同的适应机制。

Transcriptional responses of Listeria monocytogenes to low-temperature stress reveal distinct adaptive mechanisms in the absence of BKD and PrfA activation.

作者信息

Chowdhury Monzur, Ogunleye Seto C, Riman Munshi Mustafiz, Frank Matthew W, Abdelhamed Hossam

机构信息

Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States.

Department of Host Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, United States.

出版信息

Microb Pathog. 2025 Aug 21;208:108001. doi: 10.1016/j.micpath.2025.108001.

Abstract

Listeria monocytogenes, a foodborne pathogen capable of growth at refrigeration temperatures, represents a significant public health challenge. Its ability to grow at low temperatures is mediated by incorporation of high levels of branched-chain fatty acids (BCFAs) into its membrane. This adaptation is crucial for maintaining optimal membrane fluidity and function under harsh conditions. L. monocytogenes synthesizes BCFAs through a pathway that is linked to branched-chain amino acids (BCAAs) degradation, a process critically dependent on the branched-chain α-keto acid dehydrogenase (BKD) enzyme, which catalyzes a key step in converting BCAAs into precursors for BCFA synthesis. While BKD contributes to membrane integrity and supports virulence, the master regulator of virulence factors in L. monocytogenes is PrfA. This study investigated the transcriptional response of L. monocytogenes to low temperatures under two distinct genetic conditions: deletion of bkdA1 (ΔbkdA1), which encodes a subunit of BKD, and constitutive activation of PrfA (F2365PrfA∗ strain). The results indicate that while PrfA activation does not affect BCFA biosynthesis, or phospholipid composition, the BKD enzyme remains crucial for BCFA production and maintaining normal phospholipid profiles. RNA-seq analysis revealed contrasting adaptive strategies in the ΔbkdA1 and F2365PrfA∗ strains compared to the wild-type (WT). A key finding was the upregulation of BCAA biosynthesis in the absence of BKD and downregulation under active PrfA conditions. The upregulation observed in the ΔbkdA1 strain may reflect a compensatory mechanism for the loss of BKD function, while the downregulation in the PrfA-activated strain could be part of a broader metabolic shift associated with virulence genes expression. Additionally, the ΔbkdA1 strain showed significant upregulation of fabH encoding β-ketoacyl-ACP synthase III, despite general downregulation of other fatty acid biosynthesis genes. This suggests a compensatory mechanism for BCFA synthesis in the absence of BKD complex activity. Conversely, the F2365PrfA∗ strain exhibited upregulation of several fatty acid biosynthesis genes. Both strains showed altered expression of genes involved in amino acid metabolism, cell wall structure, and transport systems, reflecting comprehensive cellular reprogramming. These findings provide new insights into adaptive mechanisms of L. monocytogenes under low temperatures and highlight the intricate interplay between metabolism, stress response, and virulence in this medically important pathogen.

摘要

单核细胞增生李斯特菌是一种能够在冷藏温度下生长的食源性病原体,对公共卫生构成重大挑战。它在低温下生长的能力是通过将高水平的支链脂肪酸(BCFAs)整合到其细胞膜中来介导的。这种适应性对于在恶劣条件下维持最佳的膜流动性和功能至关重要。单核细胞增生李斯特菌通过一条与支链氨基酸(BCAAs)降解相关的途径合成BCFAs,这一过程严重依赖于支链α-酮酸脱氢酶(BKD),该酶催化将BCAAs转化为BCFA合成前体的关键步骤。虽然BKD有助于膜的完整性并支持毒力,但单核细胞增生李斯特菌中毒力因子的主要调节因子是PrfA。本研究调查了单核细胞增生李斯特菌在两种不同遗传条件下对低温的转录反应:编码BKD一个亚基的bkdA1缺失(ΔbkdA1),以及PrfA的组成型激活(F2365PrfA∗菌株)。结果表明,虽然PrfA的激活不影响BCFA的生物合成或磷脂组成,但BKD酶对于BCFA的产生和维持正常的磷脂谱仍然至关重要。RNA测序分析揭示了与野生型(WT)相比,ΔbkdA1和F2365PrfA∗菌株中不同的适应性策略。一个关键发现是在没有BKD的情况下BCAA生物合成上调,而在PrfA激活条件下下调。在ΔbkdA1菌株中观察到的上调可能反映了BKD功能丧失的一种补偿机制,而在PrfA激活菌株中的下调可能是与毒力基因表达相关的更广泛代谢转变的一部分。此外,尽管其他脂肪酸生物合成基因普遍下调,但ΔbkdA1菌株中编码β-酮酰基-ACP合酶III的fabH显著上调。这表明在没有BKD复合物活性的情况下BCFA合成的一种补偿机制。相反,F2365PrfA∗菌株表现出几种脂肪酸生物合成基因的上调。两种菌株都显示出参与氨基酸代谢、细胞壁结构和转运系统的基因表达发生改变,反映了全面的细胞重编程。这些发现为单核细胞增生李斯特菌在低温下的适应性机制提供了新的见解,并突出了这种医学上重要的病原体在代谢、应激反应和毒力之间的复杂相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验