Luo Yi, Liu Yanmin, Chen Jianjie, Yang Jie, Yu Jiang
School of Mathematics and Statistics, Guizhou University, Guiyang, 550025, China.
Zunyi Normal University, Zunyi, 563002, China.
Sci Rep. 2025 Aug 23;15(1):31012. doi: 10.1038/s41598-025-16539-8.
In multi-objective particle swarm optimization, achieving a balance between solution convergence and diversity remains a crucial challenge. To cope with this difficulty, this paper proposes a novel multi-objective particle swarm algorithm, called ASDMOPSO, which aims to improve the optimization efficiency through the angular division of the archive and the dynamic update strategy. The algorithm efficiently classifies non-dominated solutions by dividing the external archive region into equal angles, thus achieving fine management and diversity maintenance of solutions during the optimization process. When the external archive overflows, the algorithm removes the solution in the highest density region using the congestion distance metric. At the same time, the research presents a multi-stage initialization approach. This method splits the random population into two subpopulations. Subsequently, a genetic algorithm and a differential evolutionary algorithm are utilized for optimization purposes in each subpopulation, respectively. As a result, the quality of the initial population is enhanced. To explore the solution space more efficiently, this paper designs a dynamic flight parameter adjustment technique. This technique balances exploration and exploitation by adjusting the optimization algorithm parameters in real time. The proposed algorithm is compared with several representative multi-objective optimization algorithms on 22 benchmark functions, and statistical tests, sensitivity analysis, and complexity analysis are conducted. The experimental results show that the ASDMOPSO algorithm is more competitive than other comparison algorithms, with significantly improved optimization efficiency. For example, on the ZDT4 test function, its average IGD value is 0.032, outperforming the standard PSO algorithm and surpassing all other comparison algorithms, thereby validating the algorithm's superiority in complex multi-objective optimization problems.
在多目标粒子群优化中,在解的收敛性和多样性之间取得平衡仍然是一个关键挑战。为应对这一难题,本文提出了一种新颖的多目标粒子群算法,称为ASDMOPSO,其旨在通过存档的角度划分和动态更新策略来提高优化效率。该算法通过将外部存档区域划分为相等的角度来有效地对非支配解进行分类,从而在优化过程中实现对解的精细管理和多样性维护。当外部存档溢出时,该算法使用拥挤距离度量去除最高密度区域中的解。同时,该研究提出了一种多阶段初始化方法。此方法将随机种群划分为两个子种群。随后,分别在每个子种群中利用遗传算法和差分进化算法进行优化。结果,初始种群的质量得到了提高。为了更有效地探索解空间,本文设计了一种动态飞行参数调整技术。该技术通过实时调整优化算法参数来平衡探索和利用。在22个基准函数上,将所提出的算法与几种代表性的多目标优化算法进行了比较,并进行了统计测试、敏感性分析和复杂性分析。实验结果表明,ASDMOPSO算法比其他比较算法更具竞争力,优化效率有显著提高。例如,在ZDT4测试函数上,其平均IGD值为0.032,优于标准PSO算法且超过所有其他比较算法,从而验证了该算法在复杂多目标优化问题中的优越性。