Kalaivani A, Khan Tabrej, V Gayathri, Balraj Babu, Sebaey Tamer A
Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India.
Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia.
ACS Omega. 2025 Aug 7;10(32):35451-35461. doi: 10.1021/acsomega.4c09169. eCollection 2025 Aug 19.
The influence of varying parameters such as current density (5-20 mA/cm), bath temperature (30-90 °C), deposition time (15-60 min), and phosphorus concentration (0.1-0.4 M) on the successful synthesis of NiFeP thin films using the electrodeposition method was examined. X-ray diffraction analysis confirms the tetragonal crystalline structure of the deposited films, with consistent lattice constants and fine crystallinity. Increasing current density improves the intensity of the NiFeP (112) peak, validating the tetragonal phase. No impurity peaks are detected, indicating a single-phase tetragonal NiFeP. Scanning electron microscopy reveals the agglomeration of nano NiFeP particles and the formation of crack-free coatings at higher current densities. Energy-dispersive X-ray spectroscopy confirms the absence of contaminants and a matching atomic ratio of Ni to Fe. Magnetic analysis shows increasing saturation magnetization with current density and bath temperature, reaching maximum values at specific conditions. A phosphorus concentration of 0.3 M exhibits higher magnetization. The Vickers hardness test demonstrates that higher current density increases microhardness, likely due to lower stress, while hardness decreases with increasing bath temperature.
研究了电流密度(5 - 20 mA/cm)、镀液温度(30 - 90 °C)、沉积时间(15 - 60分钟)和磷浓度(0.1 - 0.4 M)等不同参数对采用电沉积法成功合成NiFeP薄膜的影响。X射线衍射分析证实了沉积薄膜的四方晶体结构,晶格常数一致且结晶良好。增加电流密度可提高NiFeP(112)峰的强度,验证了四方相。未检测到杂质峰,表明为单相四方NiFeP。扫描电子显微镜显示纳米NiFeP颗粒团聚,且在较高电流密度下形成无裂纹涂层。能量色散X射线光谱证实不存在污染物,且Ni与Fe的原子比匹配。磁性分析表明,饱和磁化强度随电流密度和镀液温度增加,在特定条件下达到最大值。磷浓度为0.3 M时表现出更高的磁化强度。维氏硬度测试表明,较高的电流密度会增加显微硬度,这可能是由于应力较低,而硬度随镀液温度升高而降低。