Hossain Elius, Kwon Kye-Si
Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam 31538, South Korea.
Department of Mechanical Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan City, Chungnam 31538, South Korea.
ACS Omega. 2025 Aug 4;10(32):35771-35784. doi: 10.1021/acsomega.5c02570. eCollection 2025 Aug 19.
The efficient removal of organic pollutants from wastewater remains a critical challenge for environmental sustainability. Enhancing the surface area through the incorporation of a three-dimensional (3D) architecture offers a promising strategy to improve the photocatalytic degradation efficiency. Herein, we fabricated 3D silver (Ag) meshes using aerosol printing and further functionalized them with zinc oxide (ZnO) nanorods (NRs), creating a hierarchical architecture aimed at improving the photocatalytic degradation of organic contaminants. Aerosol printing enabled the fabrication of a highly interconnected 3D Ag mesh with a significantly larger surface area compared to the conventional thin-film seed layer. The Schottky junction formed at the ZnO-Ag interface promoted effective charge separation and inhibited the recombination of electron-hole pairs. Under UV light, ZnO/Ag nanostructures achieved ∼98% degradation of organic dyes, including methyl orange, malachite green oxalate, methylene blue, and methyl green within 150 min, significantly outperforming pristine ZnO NRs due to the surface plasmon resonance of the Ag mesh. Moreover, the ZnO/Ag heterojunction photocatalyst retained 97.3% of its photocatalytic efficiency, with only a 2.7% loss due to photocorrosion after four consecutive cycles. This study highlights the potential of integrating printing technology with functional nanomaterials to create advanced photocatalytic platforms for environmental remediation applications.
从废水中有效去除有机污染物仍然是环境可持续发展面临的一项关键挑战。通过引入三维(3D)结构来增加表面积,为提高光催化降解效率提供了一种很有前景的策略。在此,我们使用气溶胶印刷技术制备了3D银(Ag)网,并进一步用氧化锌(ZnO)纳米棒(NRs)对其进行功能化处理,构建了一种分级结构,旨在提高有机污染物的光催化降解效果。与传统的薄膜种子层相比,气溶胶印刷能够制备出具有高度互连性且表面积显著更大的3D Ag网。在ZnO - Ag界面形成的肖特基结促进了有效的电荷分离,并抑制了电子 - 空穴对的复合。在紫外光照射下,ZnO/Ag纳米结构在150分钟内实现了对包括甲基橙、草酸孔雀石绿、亚甲基蓝和甲基绿在内的有机染料约98%的降解,由于Ag网的表面等离子体共振,其性能明显优于原始的ZnO纳米棒。此外,ZnO/Ag异质结光催化剂在连续四个循环后仍保留了97.3%的光催化效率,光腐蚀造成的损失仅为2.7%。这项研究突出了将印刷技术与功能纳米材料相结合以创建用于环境修复应用的先进光催化平台的潜力。