Suppr超能文献

用于增强光芬顿效应和可见光驱动有机染料降解的ZnFeO@g-CN的制备

Fabrication of ZnFeO@g-CN for enhanced photo-fenton effect and visible light-driven organic dye degradation.

作者信息

Li Leyan, Jianhua Wang, Fang Huihui

机构信息

College of Science, Shenyang University, Physic Department of Science College, Shenyang, 110044, China.

Liaoning Provincial Key Laboratory of Micro-Nano Materials Research and Development, Shenyang, 110044, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21707. doi: 10.1038/s41598-025-05096-9.

Abstract

This study successfully synthesized a magnetically recoverable ZnFe₂O₄@g-C₃N₄ heterojunction photocatalyst by anchoring ZnFe₂O₄ nanoparticles (20-30 nm) onto a mesoporous g-C₃N₄ framework via a hydrothermal method. Comprehensive characterizations, including XRD, SEM, TEM, and UV-Vis spectroscopy, confirmed the formation of a porous multilayer structure with uniform dispersion of ZnFe₂O₄ nanoparticles on the g-C₃N₄ surface. Tight interfacial heterojunction bonding significantly enhanced photogenerated charge separation. BET analysis revealed a high specific surface area ( 855.9 m/g) due to the mesoporous architecture, while TEM further elucidated efficient electron transport at the heterojunction interface. Under visible light irradiation, the composite achieved complete degradation of methylene blue (MB) through synergistic effects of extended light absorption, accelerated interfacial charge transfer, and high-density active sites. At an optimal ZnFe₂O₄ loading of 59.1 wt%, the degradation efficiency reached 99.99% within 40 min, with a rate constant (0.253 min⁻) ninefold higher than that of pristine g-C₃N₄. The introduction of H₂O₂ activated a photo-Fenton mechanism, further boosting hydroxyl radical (·OH) generation and improving degradation efficiency by 12 times. Additionally, the inherent ferromagnetism of ZnFe₂O₄ enabled facile magnetic recovery, with catalytic activity retention exceeding 95% after 10 consecutive cycles. The ZnFe₂O₄@g-C₃N₄ heterojunction photocatalyst developed in this work integrates high degradation efficiency, magnetic recyclability, and structural stability, demonstrating significant potential for industrial wastewater treatment and environmental remediation. This study provided a novel strategy for designing sustainable photocatalytic systems, offering insights into dual-mechanism (photocatalytic/Fenton-like) synergies and scalable heterojunction engineering for advanced pollutant degradation.

摘要

本研究通过水热法将ZnFe₂O₄纳米颗粒(20 - 30纳米)锚定在介孔g-C₃N₄骨架上,成功合成了一种可磁回收的ZnFe₂O₄@g-C₃N₄异质结光催化剂。包括XRD、SEM、TEM和紫外可见光谱在内的综合表征证实,形成了一种多孔多层结构,ZnFe₂O₄纳米颗粒均匀分散在g-C₃N₄表面。紧密的界面异质结键合显著增强了光生电荷分离。BET分析表明,由于介孔结构,其具有较高的比表面积(855.9 m²/g),而TEM进一步阐明了异质结界面处的高效电子传输。在可见光照射下,该复合材料通过扩展光吸收、加速界面电荷转移和高密度活性位点的协同作用,实现了亚甲基蓝(MB)的完全降解。在最佳ZnFe₂O₄负载量为59.1 wt%时,降解效率在40分钟内达到99.99%,速率常数(0.253 min⁻¹)比原始g-C₃N₄高九倍。H₂O₂的引入激活了光芬顿机制,进一步促进了羟基自由基(·OH)的生成,并将降解效率提高了12倍。此外,ZnFe₂O₄固有的铁磁性使其易于磁回收,连续10个循环后催化活性保留率超过95%。本工作开发的ZnFe₂O₄@g-C₃N₄异质结光催化剂兼具高降解效率、磁可回收性和结构稳定性,在工业废水处理和环境修复方面具有巨大潜力。本研究为设计可持续光催化系统提供了一种新策略,为双机制(光催化/类芬顿)协同作用以及用于高级污染物降解的可扩展异质结工程提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c08c/12217835/e74b1db2335e/41598_2025_5096_Sch1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验