文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于CT的多组学列线图用于预测机械取栓术后出院结局的开发与验证

Development and validation of a CT-based multi-omics nomogram for predicting hospital discharge outcomes following mechanical thrombectomy.

作者信息

Liu Feifan, Hong Jiayi, Chen Yuhan, Liu Huan, Wang Yue, Su Lijian, Hu Sheng, Fu Jingjing

机构信息

Department of Neurology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.

Department of Radiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.

出版信息

Front Neurosci. 2025 Aug 7;19:1643014. doi: 10.3389/fnins.2025.1643014. eCollection 2025.


DOI:10.3389/fnins.2025.1643014
PMID:40852437
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12367656/
Abstract

OBJECTIVE: This study aimed to develop a multi-omics nomogram that combines clinical parameters, radiomics, and deep transfer learning (DTL) features of hyperattenuated imaging markers (HIM) from computed tomography scans immediately following mechanical thrombectomy (MT) to predict functional outcomes at discharge. METHODS: This study enrolled 246 patients with HIM who underwent MT. Patients were randomly assigned to a training cohort ( = 197, 80%) and a validation cohort ( = 49, 20%), with an additional internal prospective test cohort ( = 57). A total of 1,834 radiomics features and 25,088 DTL features were extracted from HIM images. Feature selection was conducted using analysis of variance (ANOVA), Pearson's correlation, principal component analysis (PCA), and least absolute shrinkage and selection operator (LASSO) regression. A support vector machine (SVM)-based nomogram integrating clinical, radiomics, and DTL features was developed to predict functional outcomes at discharge. Its performance was evaluated based on accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve and area under the curve (AUC) analysis, decision curve analysis (DCA), and the DeLong test. RESULTS: The nomogram achieved AUCs of 0.995 (95% CI: 0.989-1.000) in training, 0.959 (95% CI: 0.910-1.000) in validation, and 0.894 (95% CI: 0.807-0.981) in test cohorts. Our nomogram significantly outperformed clinical, radiomics, and DTL models, as well as physician assessments (senior physicians: 0.693,  = 0.001; junior physicians: 0.600,  < 0.001). CONCLUSION: This multi-omics nomogram, integrating HIM-derived, clinical, radiomic, and DTL features, accurately predicts post-MT discharge outcomes, enabling early identification of high-risk patients and optimizing management to improve prognosis.

摘要

目的:本研究旨在开发一种多组学列线图,该列线图结合机械取栓(MT)后立即进行的计算机断层扫描中超高密度成像标志物(HIM)的临床参数、影像组学和深度迁移学习(DTL)特征,以预测出院时的功能结局。 方法:本研究纳入了246例患有HIM且接受MT的患者。患者被随机分配到训练队列(n = 197,80%)和验证队列(n = 49,20%),另有一个内部前瞻性测试队列(n = 57)。从HIM图像中提取了总共1834个影像组学特征和25088个DTL特征。使用方差分析(ANOVA)、Pearson相关性分析、主成分分析(PCA)和最小绝对收缩和选择算子(LASSO)回归进行特征选择。开发了一种基于支持向量机(SVM)的列线图,整合临床、影像组学和DTL特征,以预测出院时的功能结局。基于准确性、敏感性、特异性、受试者工作特征(ROC)曲线和曲线下面积(AUC)分析、决策曲线分析(DCA)和DeLong检验对其性能进行评估。 结果:该列线图在训练队列中的AUC为0.995(95%CI:0.989 - 1.000),在验证队列中为0.959(95%CI:0.910 - 1.000),在测试队列中为0.894(95%CI:0.807 - 0.981)。我们的列线图显著优于临床、影像组学和DTL模型以及医生评估(高级医生:0.693,P = 0.001;初级医生:0.600,P < 0.001)。 结论:这种整合HIM衍生、临床、影像组学和DTL特征的多组学列线图能够准确预测MT后的出院结局,有助于早期识别高危患者并优化管理以改善预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/cb1c57f12669/fnins-19-1643014-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/13cff96c4d1b/fnins-19-1643014-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/30562d5539fb/fnins-19-1643014-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/2824265d328e/fnins-19-1643014-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/a74bf243b4dd/fnins-19-1643014-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/813b28163881/fnins-19-1643014-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/c1b676714b76/fnins-19-1643014-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/d4d3566fd45e/fnins-19-1643014-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/cb1c57f12669/fnins-19-1643014-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/13cff96c4d1b/fnins-19-1643014-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/30562d5539fb/fnins-19-1643014-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/2824265d328e/fnins-19-1643014-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/a74bf243b4dd/fnins-19-1643014-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/813b28163881/fnins-19-1643014-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/c1b676714b76/fnins-19-1643014-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/d4d3566fd45e/fnins-19-1643014-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a5e/12367656/cb1c57f12669/fnins-19-1643014-g008.jpg

相似文献

[1]
Development and validation of a CT-based multi-omics nomogram for predicting hospital discharge outcomes following mechanical thrombectomy.

Front Neurosci. 2025-8-7

[2]
Radiomics Nomogram Based on Optimal Volume of Interest Derived from High-Resolution CT for Preoperative Prediction of IASLC Grading in Clinical IA Lung Adenocarcinomas: A Multi-Center, Large-Population Study.

Technol Cancer Res Treat. 2024

[3]
Development and validation of a machine learning model for predicting co-infection of in pediatric patients.

Transl Pediatr. 2025-6-27

[4]
A nomogram based on multiparametric magnetic resonance imaging radiomics for prediction of acute pancreatitis activity.

BMC Med Imaging. 2025-7-1

[5]
Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma.

Abdom Radiol (NY). 2025-3

[6]
Preliminary study on the ability of F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics to predict vessels that encapsulate tumor clusters and prognosis in hepatocellular carcinoma.

Quant Imaging Med Surg. 2025-7-1

[7]
Prediction of Major Adverse Cardiovascular Events in Patients with Hypertrophic Cardiomyopathy by Deep Learning and Radiomics.

Cardiology. 2025-7-11

[8]
A predictive clinical-radiomics nomogram for early diagnosis of mesenteric arterial embolism based on non-contrast CT and biomarkers.

Abdom Radiol (NY). 2025-1-15

[9]
Radiomics features from whole thyroid gland tissue for prediction of cervical lymph node metastasis in the patients with papillary thyroid carcinoma.

J Cancer Res Clin Oncol. 2023-11

[10]
Multimodal nomogram integrating deep learning radiomics and hemodynamic parameters for early prediction of post-craniotomy intracranial hypertension.

Sci Rep. 2025-7-2

本文引用的文献

[1]
Machine learning, clinical-radiomics approach with HIM for hemorrhagic transformation prediction after thrombectomy and treatment.

Front Neurol. 2025-2-27

[2]
Deep Learning-Assisted Diagnosis of Malignant Cerebral Edema Following Endovascular Thrombectomy.

Acad Radiol. 2025-6

[3]
Predicting Functional Outcomes of Endovascular Thrombectomy in Acute Ischemic Stroke Using a Clinical-Radiomics Nomogram.

World Neurosurg. 2025-1

[4]
Stroke rehabilitation: from diagnosis to therapy.

Front Neurol. 2024-8-13

[5]
Evaluating deep learning techniques for identifying tongue features in subthreshold depression: a prospective observational study.

Front Psychiatry. 2024-8-8

[6]
An integrated nomogram combining clinical and radiomic features of hyperattenuated imaging markers to predict malignant cerebral edema following endovascular thrombectomy.

Quant Imaging Med Surg. 2024-7-1

[7]
A CT texture-based nomogram for predicting futile reperfusion in patients with intraparenchymal hyperdensity after endovascular thrombectomy for acute anterior circulation large vessel occlusion.

Front Neurol. 2024-4-19

[8]
Deep learning on pre-procedural computed tomography and clinical data predicts outcome following stroke thrombectomy.

J Neurointerv Surg. 2025-2-14

[9]
Endovascular thrombectomy for DAWN- and DEFUSE-3 ineligible acute ischemic stroke patients: a systematic review and meta-analysis.

J Neurol. 2024-5

[10]
CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage.

Eur Radiol. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索