Niu Wenhui, Fang Chi, Tang Likun, Unsal Elif, Fu Yubin, Deka Jitul, Liu Fupin, Popov Alexey A, Wu Fupeng, Shi Huanhuan, Komber Hartmut, Dianat Arezoo, Gutierrez Rafael, Ma Ji, Sang Yutao, Cuniberti Gianaurelio, Parkin Stuart S P
Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstraße 4 01062 Dresden Germany.
Chem Sci. 2025 Aug 13. doi: 10.1039/d5sc03887a.
The possibility that current passing through an organic molecule becomes spin-polarized is highly intriguing. Amongst these molecules, helicene units have recently been shown to exhibit such a chiral-induced spin selectivity (CISS) effect. Thus, helical nanographenes (NGs), whose core building block is a helicene unit, are natural candidates for generating CISS. However, reports on the CISS effect in helical nanographenes (NGs) remain limited, primarily due to the lack of a suitable molecular platform for detecting spin-selective transport. In this work, we have developed a synthetic strategy using pre-fused key bonds in oligophenylene precursors and successfully synthesized lateral extended NGs that incorporate either single or double undecabenzo[7]helicene units with high yields. The resultant lateral extended helical NGs display excellent chiroptical properties including strong circular dichroism and large dissymmetry factors. Furthermore, magneto-conductive atomic force microscopy (mc-AFM) and magnetoresistance (MR) measurements show clear evidence for spin polarization of the current with a large spin polarization of up to 80% and a robust MR of 1.5% at room temperature. Together with theoretical modeling, our results identify lateral extended helical NGs as promising quantum materials for future organic spintronic devices.
电流通过有机分子时发生自旋极化的可能性极具吸引力。在这些分子中,最近已表明螺旋烯单元会表现出这种手性诱导自旋选择性(CISS)效应。因此,以螺旋烯单元为核心构建块的螺旋纳米石墨烯(NGs)是产生CISS的天然候选材料。然而,关于螺旋纳米石墨烯(NGs)中CISS效应的报道仍然有限,主要是因为缺乏用于检测自旋选择性输运的合适分子平台。在这项工作中,我们开发了一种在寡聚亚苯基前体中使用预融合关键键的合成策略,并成功地以高产率合成了包含单个或双个十一苯并[7]螺旋烯单元的横向扩展NGs。所得的横向扩展螺旋NGs表现出优异的手性光学性质,包括强烈的圆二色性和大的不对称因子。此外,磁导原子力显微镜(mc-AFM)和磁电阻(MR)测量结果清楚地证明了电流的自旋极化,在室温下具有高达80%的大自旋极化率和1.5%的稳健磁电阻。结合理论建模,我们的结果表明横向扩展螺旋NGs是未来有机自旋电子器件中有前景的量子材料。