基于数字病理学的人工智能模型预测胃食管交界腺癌中的微卫星不稳定性
Digital pathology-based artificial intelligence model to predict microsatellite instability in gastroesophageal junction adenocarcinomas.
作者信息
Li Zhenqian, Chen JingQi, Sun Miaomiao, Li Daoming, Chen Kuisheng
机构信息
Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China.
出版信息
Front Oncol. 2025 Aug 7;15:1486140. doi: 10.3389/fonc.2025.1486140. eCollection 2025.
PURPOSE
Microsatellite instability (MSI) plays a crucial role in determining the therapeutic outcomes of gastroesophageal junction (GEJ) adenocarcinoma. This study aimed to develop a deep learning model based on H&E-stained pathological specimens to accurately identify MSI-H in GEJ adenocarcinomas patients.
METHODS
A total of 416 H&E-stained slides of 212 GEJ adenocarcinoma patients were collected to establish an artificial intelligence (AI) model using digital pathology (DP) for of MSI-H prediction. Simple Vit and ResNet18 Neural networks were trained and tested on models developed from patch-level images. A whole-slide image (WSI)-level AI model was constructed by integrating deep learning- generated pathological features with six machine learning algorithms.
RESULTS
The MLP model showed demonstrated the highest performance in predicting MSI-H in the test cohort, achieving an AUC of 93.3%, a sensitivity of 0.841, and a specificity of 0.952. Similarly, Decision Curve Analysis (DCA) revealed that WSI-level H&E-stained slides offered significant clinical MSI-H prediction in GEJ adenocarcinoma patients.
CONCLUSION
The AI model based on digital pathology exhibits great potential for predicting MSI-H in GEJ adenocarcinoma, suggesting promising clinical applications.
目的
微卫星不稳定性(MSI)在决定胃食管交界(GEJ)腺癌的治疗结果中起着关键作用。本研究旨在基于苏木精和伊红(H&E)染色的病理标本开发一种深度学习模型,以准确识别GEJ腺癌患者中的微卫星高度不稳定(MSI-H)。
方法
收集212例GEJ腺癌患者的416张H&E染色玻片,使用数字病理学(DP)建立用于预测MSI-H的人工智能(AI)模型。在从贴片级图像开发的模型上对简单视觉Transformer(Simple Vit)和残差网络18(ResNet18)神经网络进行训练和测试。通过将深度学习生成的病理特征与六种机器学习算法相结合,构建了一个全切片图像(WSI)级别的AI模型。
结果
多层感知器(MLP)模型在测试队列中预测MSI-H方面表现出最高性能,曲线下面积(AUC)为93.3%,灵敏度为0.841,特异性为0.952。同样,决策曲线分析(DCA)表明,WSI级别的H&E染色玻片在GEJ腺癌患者中提供了显著的临床MSI-H预测。
结论
基于数字病理学的AI模型在预测GEJ腺癌中的MSI-H方面具有巨大潜力,显示出有前景的临床应用价值。
相似文献
Comput Methods Programs Biomed. 2025-10
Transl Cancer Res. 2025-5-30
Cochrane Database Syst Rev. 2024-10-17
本文引用的文献
Insights Imaging. 2023-6-7