Suppr超能文献

抑制剂诱导的二聚化介导了严重急性呼吸综合征冠状病毒2 3C样蛋白酶突变体对鲁伏特韦的耐药性。

Inhibitor-induced dimerization mediates lufotrelvir resistance in mutants of SARS-CoV-2 3C-like protease.

作者信息

Wang Guanyu, Venegas Felipe, Rueda Andres, Yañez Osvaldo, Osorio Manuel I, Qin Sibei, Pérez-Donoso José Manuel, Thibodeaux Christopher J, Moitessier Nicolas, Mittermaier Anthony K

机构信息

Department of Chemistry, McGill University, Montreal, Quebec, Canada.

Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.

出版信息

Protein Sci. 2025 Sep;34(9):e70275. doi: 10.1002/pro.70275.

Abstract

The emergence of SARS-CoV-2 and other lethal coronaviruses has prompted extensive research into targeted antiviral treatments, particularly focusing on the viral 3C-like protease (3CL) due to its essential role for viral replication. However, the rise of drug resistance mutations poses threats to public health and underscores the need to predict resistance mutations and understand the mechanism of how these mutations confer resistance. The binding of inhibitor to 3CL drives it from the monomeric to the active dimeric form, which can counterintuitively lead to enzyme activation rather than inhibition. Furthermore, we find this allosteric coupling between binding and dimerization is sensitive to mutation, leading to a new mechanism for drug resistance. Understanding the relationship between inhibitor binding and dimerization is important for resistant strain surveillance and development of robust antivirals. Herein, we present a systematic study of drug resistance mediated by inhibitor-induced dimerization of 3CL.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和其他致死性冠状病毒的出现促使人们对靶向抗病毒治疗进行广泛研究,特别是聚焦于病毒3C样蛋白酶(3CL),因为它在病毒复制中起着至关重要的作用。然而,耐药性突变的出现对公众健康构成威胁,并凸显了预测耐药性突变以及了解这些突变产生耐药性机制的必要性。抑制剂与3CL的结合会使其从单体形式转变为活性二聚体形式,这可能会产生与直觉相反的结果,即导致酶激活而非抑制。此外,我们发现结合与二聚化之间的这种别构偶联对突变敏感,从而导致了一种新的耐药机制。了解抑制剂结合与二聚化之间的关系对于耐药菌株监测和开发有效的抗病毒药物至关重要。在此,我们对由抑制剂诱导的3CL二聚化介导的耐药性进行了系统研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc3b/12375981/b3fb0989e7af/PRO-34-e70275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验