Suppr超能文献

通过转录谱分析和DNA亲和纯化测序揭示的真菌磷酸盐饥饿反应的新型调节因子

A novel regulator of the fungal phosphate starvation response revealed by transcriptional profiling and DNA affinity purification sequencing.

作者信息

Huberman Lori B, Wu Vincent W, Kowbel David J, Lee Juna, Daum Chris, Singan Vasanth R, Grigoriev Igor V, O'Malley Ronan C, Glass N Louise

机构信息

Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.

Plant and Microbial Biology Department, University of California, Berkeley, California, USA.

出版信息

mBio. 2025 Aug 25:e0202325. doi: 10.1128/mbio.02023-25.

Abstract

Cells must accurately sense and respond to nutrients to compete for resources and establish growth. Phosphate is a critical nutrient source necessary for signaling, energy metabolism, and synthesis of nucleic acids, phospholipids, and cellular metabolites. During phosphate limitation, fungi import phosphate from the environment and liberate phosphate from phosphate-containing molecules in the cell. In the model filamentous fungus , the phosphate starvation response is regulated by the conserved transcription factor NUC-1. The activity of NUC-1 is repressed by a complex of the cyclin-dependent kinase MDK-1 and the cyclin PREG when phosphate is plentiful. When phosphate is limiting, NUC-1 repression by MDK-1/PREG is relieved by the cyclin-dependent kinase inhibitor NUC-2. We investigated the global response of to phosphate starvation. During phosphate starvation, NUC-1 directly activated the expression of genes encoding phosphatases, nucleases, and a phosphate transporter and directly repressed genes associated with the ribosome. Additionally, NUC-1 indirectly activated the expression of an uncharacterized transcription factor, which we named . NUC-3 directly repressed the expression of genes involved in phosphate acquisition and liberation after an extended period of phosphate starvation. Additionally, NUC-3 directly repressed the expression of the cyclin-dependent kinase inhibitor . Thus, through the combination of NUC-3 direct repression of genes in the phosphate starvation response and , an activator of the phosphate starvation response, NUC-3 serves to act as a brake on the phosphate starvation response after an extended period of phosphate starvation. This braking mechanism could reduce transcription, a phosphate-intensive process, under conditions of extended phosphate limitation.IMPORTANCEFungi have evolved regulatory networks to respond to available nutrients. Phosphate is often a limiting nutrient for fungi that is critical for many cellular functions, including nucleic acid and phospholipid biosynthesis, cell signaling, and energy metabolism. The fungal response to phosphate limitation is important in interactions with plants and animals. We investigated the global transcriptional response to phosphate starvation and the role of a major transcriptional regulator, NUC-1, in the model filamentous fungus . Our data show that NUC-1 is a bifunctional transcription factor that directly activates phosphate acquisition genes, while directly repressing genes associated with phosphate-intensive processes. NUC-1 indirectly regulates an uncharacterized transcription factor, which we named . NUC-3 directly represses phosphate acquisition genes and , an activator of the phosphate starvation response, during extended periods of phosphate starvation. Thus, NUC-3 acts as a brake on the phosphate starvation response to reduce phosphate-intensive activities, like transcriptional activation, when phosphate starvation persists.

摘要

细胞必须精确感知并响应营养物质,以竞争资源并实现生长。磷酸盐是信号传导、能量代谢以及核酸、磷脂和细胞代谢物合成所必需的关键营养源。在磷酸盐限制期间,真菌从环境中摄取磷酸盐,并从细胞内的含磷分子中释放磷酸盐。在模式丝状真菌中,磷酸盐饥饿应答由保守的转录因子NUC-1调控。当磷酸盐充足时,细胞周期蛋白依赖性激酶MDK-1和细胞周期蛋白PREG的复合物会抑制NUC-1的活性。当磷酸盐缺乏时,细胞周期蛋白依赖性激酶抑制剂NUC-2会解除MDK-1/PREG对NUC-1的抑制。我们研究了该真菌对磷酸盐饥饿的全局应答。在磷酸盐饥饿期间,NUC-1直接激活编码磷酸酶、核酸酶和磷酸盐转运蛋白的基因的表达,并直接抑制与核糖体相关的基因。此外,NUC-1间接激活了一个未鉴定的转录因子的表达,我们将其命名为NUC-3。在长时间的磷酸盐饥饿后,NUC-3直接抑制参与磷酸盐摄取和释放的基因的表达。此外,NUC-3直接抑制细胞周期蛋白依赖性激酶抑制剂的表达。因此,通过NUC-3直接抑制磷酸盐饥饿应答中的基因以及磷酸盐饥饿应答的激活因子,在长时间的磷酸盐饥饿后,NUC-3起到了抑制磷酸盐饥饿应答的作用。这种制动机制可以在长时间的磷酸盐限制条件下减少转录这一消耗磷酸盐的过程。

重要性

真菌已经进化出调控网络来响应可用营养物质。磷酸盐通常是真菌的限制营养物质,对许多细胞功能至关重要,包括核酸和磷脂生物合成、细胞信号传导和能量代谢。真菌对磷酸盐限制的应答在与植物和动物的相互作用中很重要。我们研究了模式丝状真菌对磷酸盐饥饿的全局转录应答以及主要转录调节因子NUC-1的作用。我们的数据表明,NUC-1是一种双功能转录因子,它直接激活磷酸盐摄取基因,同时直接抑制与高磷酸盐消耗过程相关的基因。NUC-1间接调节一个未鉴定的转录因子,我们将其命名为NUC-3。在长时间的磷酸盐饥饿期间,NUC-3直接抑制磷酸盐摄取基因和磷酸盐饥饿应答的激活因子。因此,当磷酸盐饥饿持续时,NUC-3对磷酸盐饥饿应答起到制动作用,以减少高磷酸盐消耗活动,如转录激活。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验