Young Ryan A, Shin Justin D, Guo Ziyi, Jadhav Shantanu P
Brandeis University.
Johns Hopkins University.
eNeuro. 2025 Aug 25. doi: 10.1523/ENEURO.0336-24.2025.
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e. the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats (male Long-Evans rats), we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication. This study reveals that shared communication subspaces between the hippocampus and prefrontal cortex are aligned with both behavioral patterns and network oscillations during a spatial memory task. We demonstrate that these shared subspaces robustly predict task behavior, while local activity in either region alone does not. The organization of these task subspaces into differing manifolds demonstrates task information in interregional coordination, thought to be critical for memory-guided behavior. Moreover, our findings highlight the significance of theta power in modulating these communication dynamics. These insights provide a deeper understanding of the interregional neural mechanisms underlying mnemonic and behavioral processes, which are of broad interest to the neuroscience community.
节律性网络状态被认为有助于脑区之间的通信,但这些振荡如何影响通信子空间,即介导区域间通信的低维神经活动模式,以及反过来子空间如何影响行为,仍不清楚。我们使用大鼠(雄性长 Evans 大鼠)的空间记忆任务,同时记录海马 CA1 和前额叶皮层(PFC)的神经元集群,以解决这个问题。我们发现任务行为与这些区域之间的低维共享子空间最匹配,而不是与任何一个区域的局部活动匹配。至关重要的是,网络振荡和速度都调节了这个通信子空间的结构和性能。为了理解通信空间,我们使用流形技术可视化了 CA1-PFC 共享通信几何结构,发现了环状结构。我们假设这些共享活动流形被用来介导任务行为。这些发现表明,记忆引导行为是由 CA1-PFC 共享相互作用驱动的,这些相互作用由振荡状态动态调节,为节律与行为相关神经通信之间的相互作用提供了新的视角。这项研究表明,在空间记忆任务期间,海马体和前额叶皮层之间的共享通信子空间与行为模式和网络振荡都对齐。我们证明这些共享子空间能够可靠地预测任务行为,而单独一个区域的局部活动则不能。这些任务子空间组织成不同的流形,证明了区域间协调中的任务信息,这被认为对记忆引导行为至关重要。此外,我们的发现突出了θ波功率在调节这些通信动态中的重要性。这些见解为记忆和行为过程背后的区域间神经机制提供了更深入的理解,这是神经科学界广泛感兴趣的。
2025-1
Autism Adulthood. 2024-12-2
Cochrane Database Syst Rev. 2016-10-4