归一化与区域间通信的分层神经回路理论

Hierarchical Neural Circuit Theory of Normalization and Inter-areal Communication.

作者信息

Pal Asit, Rawat Shivang, Heeger David J, Martiniani Stefano

出版信息

bioRxiv. 2025 Jul 19:2025.07.15.664935. doi: 10.1101/2025.07.15.664935.

Abstract

UNLABELLED

The primate brain exhibits a hierarchical, modular architecture with conserved microcircuits executing canonical computations across reciprocally connected cortical areas. Though feedback connections are ubiquitous, their functions remain largely unknown. To investigate the role of feedback, we present a hierarchical neural circuit theory with feedback connections that dynamically implements divisive normalization across its hierarchy. In a two-stage instantiation (V1 ↔V2), increasing feedback from V2 to V1 amplifies responses in both areas, more so in the higher cortical area, consistent with experiments. We analytically derive power spectra (V1) and coherence spectra (V1-V2), and validate them against experimental observations: peaks in both spectra shift to higher frequencies with increased stimulus contrast, and power decays as 1/f at high frequencies (f). The theory further predicts distinctive spectral signatures of feedback and input gain modulation. Crucially, the theory offers a unified view of inter-areal communication, with emergent features commensurate with empirical observations of both communication subspaces and inter-areal coherence. It admits a low-dimensional communication subspace, where inter-areal communication is lower-dimensional than within-area communication, and frequency bands characterized by high inter-areal coherence. It further predicts that: i) increasing feedback strength enhances inter-areal communication and diminishes within-area communication, without altering the subspace dimensionality; ii) high-coherence frequencies are characterized by stronger communication (ability to estimate neural activity in one brain area from neural activity in another brain area) and reduced subspace dimensionality. Finally, a three-area (V1 ↔V4 and V1 ↔V5) instantiation of the theory demonstrates that differential feedback from higher to lower cortical areas dictates their dynamic functional connectivity. Altogether, our theory provides a robust and analytically tractable framework for generating experimentally-testable predictions about normalization, inter-areal communication, and functional connectivity.

HIGHLIGHTS

Hierarchical neural circuit with reciprocal connections implementing divisive normalization.Unified theory of inter-areal communication.Emergent properties of the theory explain key experimental findings.Feedback from higher cortical areas dictates functional connectivity.

IN BRIEF

A hierarchical recurrent neural circuit theory with reciprocal connections, that dynamically implements divisive normalization, predicts key experimental findings. The theory offers a unified view of inter-areal communication in which both communication through subspace and communication through coherence are emergent properties, predicting that high-coherence frequencies exhibit stronger inter-areal communication and reduced subspace dimensionality.

摘要

未标注

灵长类动物大脑呈现出层次化、模块化的结构,具有保守的微电路,在相互连接的皮质区域执行典型计算。尽管反馈连接无处不在,但其功能在很大程度上仍不清楚。为了研究反馈的作用,我们提出了一种具有反馈连接的层次神经回路理论,该理论在其层次结构中动态地实现归一化抑制。在一个两阶段实例(V1 ↔V2)中,增加从V2到V1的反馈会增强两个区域的反应,在较高皮质区域更为明显,这与实验结果一致。我们解析推导了功率谱(V1)和相干谱(V1-V2),并根据实验观察进行了验证:随着刺激对比度增加,两个谱中的峰值都向更高频率移动,并且在高频(f)处功率按1/f衰减。该理论进一步预测了反馈和输入增益调制的独特频谱特征。至关重要的是,该理论提供了一个区域间通信的统一观点,其涌现特征与通信子空间和区域间相干性的实证观察结果相符。它允许一个低维通信子空间,其中区域间通信的维度低于区域内通信,并且具有以高区域间相干性为特征的频带。它还进一步预测:i)增加反馈强度会增强区域间通信并减少区域内通信,而不改变子空间维度;ii)高相干频率的特征是更强的通信(从另一个脑区的神经活动估计一个脑区神经活动的能力)和降低的子空间维度。最后,该理论的一个三区域(V1 ↔V4和V1 ↔V5)实例表明,从较高皮质区域到较低皮质区域的差异反馈决定了它们的动态功能连接。总之,我们的理论为生成关于归一化、区域间通信和功能连接的可实验验证预测提供了一个强大且易于分析处理的框架。

要点

具有相互连接并实现归一化抑制的层次神经回路。区域间通信的统一理论。该理论的涌现特性解释了关键实验结果。来自较高皮质区域的反馈决定功能连接。

简而言之

一种具有相互连接的层次递归神经回路理论,动态实现归一化抑制,预测了关键实验结果。该理论提供了一个区域间通信的统一观点,其中通过子空间的通信和通过相干性的通信都是涌现特性,预测高相干频率表现出更强的区域间通信和降低的子空间维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e16d/12338607/bbb6ba9ec294/nihpp-2025.07.15.664935v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索