Vandvik Vigdis, Halbritter Aud H, Macias-Fauria Marc, Maitner Brian S, Michaletz Sean T, Telford Richard J, Bison Nicole, Chacon-Labella Julia, Cotner Sehoya, Egelkraut Dagmar, Garen Josef, Gaudard Joseph, Geange Sonya R, Rosati Maria A, Andersen Emil A S, Ahler Sam J, Atkinson Joe, Baumane Marta, Bradler Pia M, Dawson Hilary Rose, Eckberg Julia, Elsy Alexander D, Erkelenz Joshua, Eshelman Susan E, Guclu Coskun, Gullvåg Rebekka, Gya Ragnhild, Hartford Sorrel, Hayden Meghan T, Holle Mukhlish J M, Kullberg Alyssa T, Lepley Kai, Correia Marta, Löwenstein Cora E, Maré Celesté, Mauki Dickson, Navarro Jocelyn, Oberholzer Barryette, Olivier Bernard, Olson Alyssa N, Ray Courtenay A, von Oppen Jonathan, Vorstenbosch Tom, Wang Jonathan A, Enquist Brian J
Department of Biological Sciences, University of Bergen, Bergen, Norway.
Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
Sci Data. 2025 Aug 25;12(1):1477. doi: 10.1038/s41597-025-05509-4.
Plant functional trait-based approaches are powerful tools to assess the consequences of global environmental changes for plant ecophysiology, population and community ecology, ecosystem functioning, and landscape ecology. Here, we present data capturing these ecological dimensions from grazing, nitrogen addition, and warming experiments conducted along a 821 m a.s.l. elevation gradient and from a climate warming experiment conducted across a 3,200 mm precipitation gradient in boreal and alpine grasslands in Vestland County, western Norway. From these systems we collected 28,762 plant and leaf functional trait measurements from 76 vascular plant species, 88 leaf assimilation-temperature responses, 577 leaf handheld hyperspectral readings, 2.26 billion leaf temperature measurements, 3,696 ecosystem CO flux measurements, and 10.69 ha of multispectral (10-band) and RGB cm-resolution imagery from 4,648 individual images obtained from airborne sensors. These data augment existing longer-term data on local climate, soils, plant populations, plant community composition, and ecosystem functioning from within the same experiments and study systems and from similar systems in other mountain regions globally.
基于植物功能性状的方法是评估全球环境变化对植物生态生理学、种群与群落生态学、生态系统功能以及景观生态学影响的有力工具。在此,我们展示了从挪威西部韦斯特兰郡的北方和高山草原沿着海拔821米的梯度进行的放牧、添加氮和增温实验,以及跨越3200毫米降水梯度进行的气候变暖实验中获取的涵盖这些生态维度的数据。从这些系统中,我们收集了来自76种维管植物的28762个植物和叶片功能性状测量值、88个叶片同化-温度响应、577个叶片手持式高光谱读数、22.6亿个叶片温度测量值、3696个生态系统CO通量测量值,以及从机载传感器获得的4648张单独图像中提取的10.69公顷多光谱(10波段)和RGB厘米分辨率图像。这些数据补充了来自同一实验和研究系统以及全球其他山区类似系统中关于当地气候、土壤、植物种群、植物群落组成和生态系统功能的现有长期数据。