Fei Yunlong, Zhang Shaoqing, Zhang Zhengguang, Gao Yang, Xu Xing, Li Mengmeng, Yu Yangyang, Wang Kaidi, Cui Tong
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China.
Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China.
Sci Rep. 2025 Aug 25;15(1):31176. doi: 10.1038/s41598-025-15739-6.
The multiscale energetics and submesoscale instabilities after the eddy shedding of Kuroshio Loop Current (KLC) intrusion into the South China Sea (SCS) remain ambiguous. Here, a typical KLC eddy shedding process is well simulated using a downscaled submesoscale-permitting model. Then, energy and dynamics diagnostics are employed to investigate the cross-scale interactions between mesoscales and submesoscales during and after this process. In energetics, although the forward and inverse energy cascades coexist, the forward cascade of available potential energy (APE) is crucial in energizing submesoscales, while the strength of forward kinetic energy (KE) is relatively weak. The submesoscale KE is primarily charged by strong buoyancy conversion and secondarily by horizontal advection from upstream, which is mainly balanced by turbulence dissipation and vertical pressure work. In dynamics, except for the release of submesoscale APE by baroclinic instability, symmetric instability (SI) can extract KE from geostrophic flows and drive forward KE cascades. Specifically, strain-induced advective frontogenesis can rapidly sharpen submesoscales by enhancing lateral buoyancy gradients, the increased baroclinicity together with atmospheric-forced buoyancy loss causes negative total Ertel potential vorticity and creates favorable conditions for SI. These results highlight the significance of submesoscales in multiscale energetics and dynamical instabilities of the KLC eddy shedding.
黑潮环流(KLC)侵入南海(SCS)后涡旋脱落的多尺度能量学和亚中尺度不稳定性仍不明确。在此,使用一个降尺度的允许亚中尺度模型很好地模拟了一个典型的KLC涡旋脱落过程。然后,采用能量和动力学诊断方法来研究该过程期间及之后中尺度和亚中尺度之间的跨尺度相互作用。在能量学方面,虽然正向和反向能量串级共存,但可用势能(APE)的正向串级在为亚中尺度提供能量方面至关重要,而正向动能(KE)的强度相对较弱。亚中尺度动能主要由强烈的浮力转换充电,其次由来自上游的水平平流充电,其主要由湍流耗散和垂直压力做功平衡。在动力学方面,除了斜压不稳定释放亚中尺度APE外,对称不稳定(SI)可以从地转流中提取动能并驱动正向动能串级。具体而言,应变诱导的平流锋生可以通过增强横向浮力梯度迅速锐化亚中尺度,增加的斜压性与大气强迫浮力损失一起导致负的总厄特尔位涡,并为对称不稳定创造有利条件。这些结果突出了亚中尺度在KLC涡旋脱落的多尺度能量学和动力学不稳定性中的重要性。