Feng Guobing, Tang Hui, Xie Shuyi, Wang Yingying, Wu Tongyu, Cai Xiongru, Zhou Yunyi, Lu Yan, Bai Yuancheng, Zhao Mengfan, Hu Shuai, Zhang Yuezhou, Shahbazi Mohammad-Ali, Santos Hélder A, Fan Jin, Liu Dongfei
State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
Hangzhou Geriatric Hospital, Department of Pharmacy, Affiliated Hangzhou First People's Hospital Chengbei Campus, School of Medicine, Westlake University, Hangzhou 310022, China.
ACS Nano. 2025 Sep 9;19(35):31799-31817. doi: 10.1021/acsnano.5c10267. Epub 2025 Aug 26.
Precise control of the morphology of self-assembling drugs is critical for optimizing their pharmacokinetics and therapeutic efficacy. However, adapting a single drug for diverse therapeutic applications by tailoring its structure remains a central challenge. Here, we report a hydrogen-bond-guided strategy to program the morphology of a paclitaxel derivative, PTP, by introducing a phosphate group to promote supramolecular organization. PTP molecules spontaneously formed nanofibers in aqueous environments via directional hydrogen bonding. Through rational coassembly with polyethylene glycol 400 or hyaluronic acid, the nanofibers were, respectively, transformed into spherical nanoparticles (PTP@PEG) or bundled fibers (PTP@HA), enabling tailored pharmacological performance. PTP@PEG enhanced systemic circulation, reduced renal accumulation, and improved antitumor efficacy in a murine 4T1 breast cancer model following intravenous administration. In contrast, PTP@HA exhibited sustained release and potent therapeutic effects in a peritoneal metastasis model of colorectal cancer via intraperitoneal injection. This work demonstrates how tunable hydrogen bonding enables precise programming of drug assembly morphology, offering a versatile platform to expand the therapeutic applications of a single drug across multiple diseases. Tuning the nanostructure of one drug using simple excipients via hydrogen bonds presents a simple and effective approach over designing new carriers, potentially revitalizing drugs previously limited by suboptimal pharmacokinetic or pharmacodynamic profiles.
精确控制自组装药物的形态对于优化其药代动力学和治疗效果至关重要。然而,通过调整单一药物的结构以适应多种治疗应用仍然是一个核心挑战。在此,我们报告了一种氢键引导策略,通过引入磷酸基团促进超分子组装,来调控紫杉醇衍生物PTP的形态。PTP分子在水性环境中通过定向氢键自发形成纳米纤维。通过与聚乙二醇400或透明质酸进行合理的共组装,纳米纤维分别转变为球形纳米颗粒(PTP@PEG)或束状纤维(PTP@HA),从而实现了定制的药理性能。静脉注射后,PTP@PEG在小鼠4T1乳腺癌模型中增强了全身循环、减少了肾脏蓄积并提高了抗肿瘤疗效。相比之下,通过腹腔注射,PTP@HA在结直肠癌腹膜转移模型中表现出缓释和强效治疗效果。这项工作展示了可调节的氢键如何实现药物组装形态的精确调控,提供了一个通用平台,以扩展单一药物在多种疾病中的治疗应用。通过氢键利用简单辅料调节单一药物的纳米结构,相较于设计新的载体而言,是一种简单有效的方法,有可能使先前受药代动力学或药效学不佳限制的药物重焕生机。