Suppr超能文献

预测术后出院后的阿片类药物消费量:一项使用基础模型的跨国推导与验证研究

Predicting opioid consumption after surgical discharge: a multinational derivation and validation study using a foundation model.

作者信息

Varghese Chris, Peters Luke, Gaborit Lorane, Xu William, Kalyanasundaram Kaviya, Basam Aya, Park Melissa, Wells Cameron, McLean Kenneth A, Schamberg Gabriel, O'Grady Greg, Wright Deborah, Martin Jennifer, Harrison Ewen, Pockney Peter

机构信息

Department of Surgery, University of Auckland, Auckland, New Zealand.

Department of Surgery, Mayo Clinic, Rochester, MN, USA.

出版信息

NPJ Digit Med. 2025 Aug 26;8(1):547. doi: 10.1038/s41746-025-01798-6.

Abstract

Opioids are frequently overprescribed after surgery. We applied a tabular foundation model to predict the risk of post-discharge opioid consumption. The model was trained and internally validated on an 80:20 training/test split of the 'Opioid PrEscRiptions and usage After Surgery' (ACTRN12621001451897p) study cohort, including adult patients undergoing general, orthopaedic, gynaecological and urological operations (n = 4267), with external validation in a distinct cohort of patients discharged after general surgical procedures (n = 826). The area under the receiver operator curve was 0.84 (95% confidence interval [CI] 0.81-0.88) at internal testing and 0.77 (95% CI 0.74-0.80) at external validation. Brier scores were 0.13 (95% CI 0.12-0.14) and 0.19 (95% CI 0.17-0.2). Patients with a <50% predicted risk of opioid consumption consumed a median of 0 oral morphine equivalents in the first week after surgery. Applying this model would reduce opioid prescriptions by 4.5% globally, and counterfactual modelling suggests without increasing time in severe pain (-4.3%, 95% CI -17.7 to 8.6).

摘要

阿片类药物在术后经常被过度开具处方。我们应用了一个表格基础模型来预测出院后阿片类药物消费的风险。该模型在“手术后阿片类药物处方与使用情况”(ACTRN12621001451897p)研究队列的80:20训练/测试分割数据上进行训练和内部验证,研究队列包括接受普通外科、骨科、妇科和泌尿外科手术的成年患者(n = 4267),并在另一组接受普通外科手术后出院的患者(n = 826)中进行外部验证。在内部测试中,受试者工作特征曲线下面积为0.84(95%置信区间[CI] 0.81 - 0.88),在外部验证中为0.77(95% CI 0.74 - 0.80)。Brier分数分别为0.13(95% CI 0.12 - 0.14)和0.19(95% CI 0.17 - 0.2)。阿片类药物消费预测风险<50%的患者在术后第一周口服吗啡当量的中位数为0。应用该模型将在全球范围内减少4.5%的阿片类药物处方,反事实建模表明不会增加重度疼痛的时间(-4.3%,95% CI -17.7至8.6)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a8e/12381370/f94f99388ffb/41746_2025_1798_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验