文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于Eudragit-肉桂精油的纳米平台的制剂开发、表征与优化及其对耐药细菌的疗效

Formulation development, characterization, and optimization of Eudragit-cinnamon essential oil-based nanoplatform and its efficacy against resistant bacteria.

作者信息

Nawaz Touseef, Ullah Niamat, Ali Muhammad, Rab Safia Obaidur, Ahmad Irfan, Baloch Rabia, Chaman Sadia, Shah Kifayat Ullah, Amin Adnan

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan.

NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan.

出版信息

Front Chem. 2025 Aug 8;13:1555449. doi: 10.3389/fchem.2025.1555449. eCollection 2025.


DOI:10.3389/fchem.2025.1555449
PMID:40860123
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12372591/
Abstract

INTRODUCTION: Microbial resistance is a growing global concern, necessitating the development of novel drug delivery system to combat the resistant bacterial strains. We aimed to formulate Eudragit based cinnamon essential oil loaded nanoplatform against resistant microbial strain. METHODS: Nanoparticles were characterized for zeta potential, PDI, particle size, SEM, FTIR, entrapment efficiency and drug release kinetic. Box Behnken design with the quadratic model was used to check the effect of independent factors and dependent factors. RESULTS AND DISCUSSION: The and aureus have shown same MIC value of 1.25 μL/ml while and shown 0.078 and 0.625 μL/ml respectively. Quadratic polynomial equation depicted that stirring speed exhibited negative effect on the PDI, particle size and encapsulation efficiency. The polymer concentration produced positive effect on the particle size, PDI and encapsulation efficiency of the nanoparticles. The predicted response values were as particle size (Y1) 228.9 nm, PDI (Y2) 0.3 and %EE (Y3) 72.75% which were very close to the actual values of response as particle size (Y1) was 230.4 ± 3.46 nm, PDI (Y2) was 0.293 ± 0.022, and %EE (Y3) was 74.9 ± 2.32%. It was concluded that our prepared formulation can be effectively used treat resistant bacterial infections.

摘要

引言:微生物耐药性是一个日益引起全球关注的问题,因此需要开发新型药物递送系统来对抗耐药菌株。我们旨在制备基于Eudragit的负载肉桂精油的纳米平台以对抗耐药微生物菌株。 方法:对纳米颗粒进行zeta电位、PDI、粒径、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、包封率和药物释放动力学表征。采用具有二次模型的Box Behnken设计来检验独立因素和相关因素的影响。 结果与讨论:金黄色葡萄球菌和表皮葡萄球菌的最低抑菌浓度(MIC)值均为1.25μL/ml,而大肠杆菌和铜绿假单胞菌的MIC值分别为0.078和0.625μL/ml。二次多项式方程表明搅拌速度对PDI、粒径和包封率有负面影响。聚合物浓度对纳米颗粒的粒径、PDI和包封率有正面影响。预测的响应值为粒径(Y1)228.9nm、PDI(Y2)0.3和包封率(%EE,Y3)72.75%,这与响应的实际值非常接近,实际值为粒径(Y1)230.4±3.46nm、PDI(Y2)0.293±0.022和包封率(%EE,Y3)74.9±2.32%。得出的结论是,我们制备的制剂可有效用于治疗耐药细菌感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/0c10dd9eb23f/fchem-13-1555449-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/21a7ef62afc4/fchem-13-1555449-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d523f2db71a8/fchem-13-1555449-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/4a8c0e874b6f/fchem-13-1555449-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/94eabc258266/fchem-13-1555449-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/99cd0ecd041a/fchem-13-1555449-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d9b3f12ceb6b/fchem-13-1555449-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/78591b23a875/fchem-13-1555449-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/4e26231071d2/fchem-13-1555449-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/24c649130e73/fchem-13-1555449-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d774766233e9/fchem-13-1555449-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/4596966a54cf/fchem-13-1555449-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d24c6054ddc8/fchem-13-1555449-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d92a48460911/fchem-13-1555449-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/0c10dd9eb23f/fchem-13-1555449-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/21a7ef62afc4/fchem-13-1555449-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d523f2db71a8/fchem-13-1555449-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/4a8c0e874b6f/fchem-13-1555449-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/94eabc258266/fchem-13-1555449-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/99cd0ecd041a/fchem-13-1555449-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d9b3f12ceb6b/fchem-13-1555449-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/78591b23a875/fchem-13-1555449-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/4e26231071d2/fchem-13-1555449-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/24c649130e73/fchem-13-1555449-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d774766233e9/fchem-13-1555449-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/4596966a54cf/fchem-13-1555449-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d24c6054ddc8/fchem-13-1555449-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/d92a48460911/fchem-13-1555449-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5dd/12372591/0c10dd9eb23f/fchem-13-1555449-g014.jpg

相似文献

[1]
Formulation development, characterization, and optimization of Eudragit-cinnamon essential oil-based nanoplatform and its efficacy against resistant bacteria.

Front Chem. 2025-8-8

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections.

BMC Biotechnol. 2024-7-8

[4]
Treating Burn Infections With Topical Delivery of Positively Charged Norfloxacin-Loaded Lipid-Polymer Hybrid Nanoparticles.

Recent Adv Drug Deliv Formul. 2025

[5]
Biological activities of optimized biosynthesized selenium nanoparticles using Proteus mirabilis PQ350419 alone or combined with chitosan and ampicillin against common multidrug-resistant bacteria.

Microb Cell Fact. 2025-7-5

[6]
Formulation, Characterization and Cytotoxic Effect of Indomethacin-loaded Nanoparticles.

Antiinflamm Antiallergy Agents Med Chem. 2025

[7]
Development and Characterization of LL37 Antimicrobial-Peptide-Loaded Chitosan Nanoparticles: An Antimicrobial Sustained Release System.

Polymers (Basel). 2025-7-7

[8]
Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer.

Assay Drug Dev Technol. 2025-7

[9]
Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the Treatment of Hypertension.

Recent Pat Nanotechnol. 2024

[10]
Targeting Inflammatory Lesions Facilitated by Galactosylation Modified Delivery System Eudragit/Gal-PLGA@Honokiol for the treatment of Ulcerative Colitis.

J Pharm Sci. 2024-9

本文引用的文献

[1]
Antimicrobial Composites Based on Methacrylic Acid-Methyl Methacrylate Electrospun Fibers Stabilized with Copper(II).

Molecules. 2024-6-14

[2]
Natural and Synthetic Polymers for Biomedical and Environmental Applications.

Polymers (Basel). 2024-4-20

[3]
Antibacterial activity of cinnamon essential oil and its main component of cinnamaldehyde and the underlying mechanism.

Front Pharmacol. 2024-3-11

[4]
Zeta potential changing self-nanoemulsifying drug delivery systems: A newfangled approach for enhancing oral bioavailability of poorly soluble drugs.

Int J Pharm. 2024-4-25

[5]
Biomaterials for Drug Delivery and Human Applications.

Materials (Basel). 2024-1-18

[6]
Plant-based essential oil encapsulated in nanoemulsions and their enhanced therapeutic applications: An overview.

Biotechnol Bioeng. 2024-2

[7]
Circumventing the Gastrointestinal Barrier for Oral Delivery of Therapeutic Proteins and Peptides (PPTS): Current Trends and Future Trajectories.

Curr Drug Deliv. 2024

[8]
Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems.

Polymers (Basel). 2023-3-23

[9]
Development and Evaluation of Essential Oil-Based Nanoemulgel Formulation for the Treatment of Oral Bacterial Infections.

Gels. 2023-3-21

[10]
Thymol-Loaded Eudragit RS30D Cationic Nanoparticles-Based Hydrogels for Topical Application in Wounds: In Vitro and In Vivo Evaluation.

Pharmaceutics. 2022-12-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索