文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学和环境应用的天然与合成聚合物。

Natural and Synthetic Polymers for Biomedical and Environmental Applications.

作者信息

Satchanska Galina, Davidova Slavena, Petrov Petar D

机构信息

BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria.

Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria.

出版信息

Polymers (Basel). 2024 Apr 20;16(8):1159. doi: 10.3390/polym16081159.


DOI:10.3390/polym16081159
PMID:38675078
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11055061/
Abstract

Natural and synthetic polymers are a versatile platform for developing biomaterials in the biomedical and environmental fields. Natural polymers are organic compounds that are found in nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic acid, and starch, proteins, e.g., collagen, silk, and fibrin, and bacterial polyesters. Natural polymers have already been applied in numerous sectors, such as carriers for drug delivery, tissue engineering, stem cell morphogenesis, wound healing, regenerative medicine, food packaging, etc. Various synthetic polymers, including poly(lactic acid), poly(acrylic acid), poly(vinyl alcohol), polyethylene glycol, etc., are biocompatible and biodegradable; therefore, they are studied and applied in controlled drug release systems, nano-carriers, tissue engineering, dispersion of bacterial biofilms, gene delivery systems, bio-ink in 3D-printing, textiles in medicine, agriculture, heavy metals removal, and food packaging. In the following review, recent advancements in polymer chemistry, which enable the imparting of specific biomedical functions of polymers, will be discussed in detail, including antiviral, anticancer, and antimicrobial activities. This work contains the authors' experimental contributions to biomedical and environmental polymer applications. This review is a vast overview of natural and synthetic polymers used in biomedical and environmental fields, polymer synthesis, and isolation methods, critically assessessing their advantages, limitations, and prospects.

摘要

天然和合成聚合物是在生物医学和环境领域开发生物材料的通用平台。天然聚合物是在自然界中发现的有机化合物。最常见的天然聚合物包括多糖,如藻酸盐、透明质酸和淀粉;蛋白质,如胶原蛋白、丝蛋白和纤维蛋白;以及细菌聚酯。天然聚合物已被应用于众多领域,如药物递送载体、组织工程、干细胞形态发生、伤口愈合、再生医学、食品包装等。各种合成聚合物,包括聚乳酸、聚丙烯酸、聚乙烯醇、聚乙二醇等,具有生物相容性和可生物降解性;因此,它们被研究并应用于控释药物系统、纳米载体、组织工程、细菌生物膜分散、基因递送系统、3D打印中的生物墨水、医学纺织、农业、重金属去除和食品包装。在以下综述中,将详细讨论聚合物化学的最新进展,这些进展能够赋予聚合物特定的生物医学功能,包括抗病毒、抗癌和抗菌活性。这项工作包含了作者对生物医学和环境聚合物应用的实验贡献。本综述对生物医学和环境领域中使用的天然和合成聚合物、聚合物合成及分离方法进行了全面概述,批判性地评估了它们的优点、局限性和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/920bce66270d/polymers-16-01159-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/2a7fc28277f8/polymers-16-01159-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/c5ec718a6a36/polymers-16-01159-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/6edb5fa85f3e/polymers-16-01159-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/031c436a3342/polymers-16-01159-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/f0e07d12ff42/polymers-16-01159-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/30b1176e9923/polymers-16-01159-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/937505e3e398/polymers-16-01159-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/29325e9debc9/polymers-16-01159-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/d1cdb41895f5/polymers-16-01159-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/62ffe21a326f/polymers-16-01159-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/2352ba5d72c2/polymers-16-01159-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/fac6cfc5c714/polymers-16-01159-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/4693bf9bfdab/polymers-16-01159-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/920bce66270d/polymers-16-01159-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/2a7fc28277f8/polymers-16-01159-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/c5ec718a6a36/polymers-16-01159-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/6edb5fa85f3e/polymers-16-01159-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/031c436a3342/polymers-16-01159-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/f0e07d12ff42/polymers-16-01159-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/30b1176e9923/polymers-16-01159-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/937505e3e398/polymers-16-01159-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/29325e9debc9/polymers-16-01159-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/d1cdb41895f5/polymers-16-01159-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/62ffe21a326f/polymers-16-01159-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/2352ba5d72c2/polymers-16-01159-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/fac6cfc5c714/polymers-16-01159-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/4693bf9bfdab/polymers-16-01159-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64c/11055061/920bce66270d/polymers-16-01159-g014.jpg

相似文献

[1]
Natural and Synthetic Polymers for Biomedical and Environmental Applications.

Polymers (Basel). 2024-4-20

[2]
Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how.

Int J Biol Macromol. 2021-9-1

[3]
An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing.

Curr Pharm Des. 2024

[4]
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis.

Drug Deliv Transl Res. 2022-11

[5]
Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications.

Polymers (Basel). 2021-8-6

[6]
Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates.

Polymers (Basel). 2024-1-10

[7]
Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials.

Polymers (Basel). 2023-11-28

[8]
Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers.

Int J Mol Sci. 2024-5-11

[9]
Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products.

Biomaterials. 2025-1

[10]
Electrospinning and electrospray of bio-based and natural polymers for biomaterials development.

Mater Sci Eng C Mater Biol Appl. 2018-8-3

引用本文的文献

[1]
Next-Generation Wound Healing Materials: Role of Biopolymers and Their Composites.

Polymers (Basel). 2025-8-19

[2]
Rheological, Structural, and Biological Trade-Offs in Bioink Design for 3D Bioprinting.

Gels. 2025-8-19

[3]
Hydrogel-Based Nitric Oxide Delivery Systems for Enhanced Wound Healing.

Gels. 2025-8-8

[4]
Formulation development, characterization, and optimization of Eudragit-cinnamon essential oil-based nanoplatform and its efficacy against resistant bacteria.

Front Chem. 2025-8-8

[5]
Multi-round Recycling of Green Waste for the Production of Silver Nanoparticles: Synthesis, Characterization, and Biological Activity.

ACS Omega. 2025-8-4

[6]
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications.

Polymers (Basel). 2025-7-31

[7]
Biocompatible Natural Polymer-Based Amorphous Solid Dispersion System Improving Drug Physicochemical Properties, Stability, and Efficacy.

Polymers (Basel). 2025-7-28

[8]
Applications of Nanoparticles in the Diagnosis and Treatment of Ovarian Cancer.

Nanomaterials (Basel). 2025-8-6

[9]
Hydrogel Conjugation: Engineering of Hydrogels for Drug Delivery.

Pharmaceutics. 2025-7-10

[10]
Conductive biological materials for in vitro models: properties and sustainability implications.

In Vitro Model. 2025-4-24

本文引用的文献

[1]
Functional Hydrogels for Delivery of the Proteolytic Enzyme Serratiopeptidase.

Gels. 2024-2-20

[2]
Developing natural polymers for skin wound healing.

Bioact Mater. 2023-11-26

[3]
The Application of an Eco-Friendly Synthetic Polymer as a Sandy Soil Stabilizer.

Polymers (Basel). 2023-12-6

[4]
Resorbable barrier polymers for flexible bioelectronics.

Nat Commun. 2023-11-11

[5]
Peptide Amphiphiles as Biodegradable Adjuvants for Efficient Retroviral Gene Delivery.

Adv Healthc Mater. 2024-2

[6]
Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications.

Pharmaceutics. 2023-10-23

[7]
Peptide-Decorated Degradable Polycarbonate Nanogels for Eliciting Antigen-Specific Immune Responses.

Int J Mol Sci. 2023-10-21

[8]
A Versatile and Efficient Method to Isolate DNA-Polymer Conjugates.

ACS Macro Lett. 2023-9-19

[9]
Effect of Protein Corona on the Specificity and Efficacy of Nanobioconjugates to Treat Intracellular Infections.

Macromol Biosci. 2024-2

[10]
Advances, challenges, and prospects for surgical suture materials.

Acta Biomater. 2023-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索