文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于原位生物标记和生物医学成像的细胞内结晶可调谐纳米材料。

Tunable Nanomaterials of Intracellular Crystallization for In Situ Biolabeling and Biomedical Imaging.

作者信息

Liu Hao, Jiang Hui, Liu Xiaohui, Wang Xuemei

机构信息

State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.

出版信息

Chem Biomed Imaging. 2023 Mar 30;1(9):767-784. doi: 10.1021/cbmi.3c00021. eCollection 2023 Dec 25.


DOI:10.1021/cbmi.3c00021
PMID:39473839
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11504500/
Abstract

Intracellular biosynthetic nanomaterials offer tremendous opportunities for chemical biomedical imaging. A wide range of biologically active tissues are available for biosynthesis, including cells, bacteria, plants, and viruses. Nanomaterials synthesized by intracellular biomineralization with outstanding biosafety and optical properties attract unique attention. Herein, an overview of biosynthetic tunable nanomaterials within active biological tissues for chemical biomedical imaging is presented. The synthetic mechanisms and nanostructures of biosynthetic nanomaterials are summarized from the perspective of different active organisms. The ability of biosynthesis is commonly used for green synthesis of metal nanoparticles compared to those synthesized by physical or chemical methods. The tunable characteristics of these nanoparticles make it possible to utilize them as fluorescence imaging, surface-enhanced Raman spectral mapping, nuclear magnetic resonance imaging, and other biomedical photonics tools. Importantly, current issues, insights, and future tendencies of development are presented based on current biosynthetic optical nanomaterials for chemical biomedical imaging. This paper provides the summary of biosynthetic optical nanomaterials and a critical assessment of potential biomedical imaging applications in this emerging field, laying the foundation for future studies.

摘要

细胞内生物合成纳米材料为化学生物医学成像提供了巨大机遇。多种具有生物活性的组织可用于生物合成,包括细胞、细菌、植物和病毒。通过细胞内生物矿化合成的具有出色生物安全性和光学特性的纳米材料引起了特别关注。在此,本文对用于化学生物医学成像的活性生物组织内的生物合成可调谐纳米材料进行了综述。从不同活性生物体的角度总结了生物合成纳米材料的合成机制和纳米结构。与通过物理或化学方法合成的金属纳米颗粒相比,生物合成能力通常用于绿色合成金属纳米颗粒。这些纳米颗粒的可调谐特性使其有可能用作荧光成像、表面增强拉曼光谱映射、核磁共振成像和其他生物医学光子学工具。重要的是,基于当前用于化学生物医学成像的生物合成光学纳米材料,阐述了当前存在的问题、见解和未来发展趋势。本文提供了生物合成光学纳米材料的总结,并对这一新兴领域中潜在的生物医学成像应用进行了批判性评估,为未来的研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/cafd73e76ceb/im3c00021_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/2a7b56b5b054/im3c00021_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/152dbcbedced/im3c00021_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/fb996965a8fe/im3c00021_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/4cf954b2f510/im3c00021_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/afa22cbebf27/im3c00021_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/8caec99cbe2e/im3c00021_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/a89f671619f8/im3c00021_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/d24d1b56412a/im3c00021_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/61b1408b794c/im3c00021_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/1140fae181c0/im3c00021_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/cafd73e76ceb/im3c00021_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/2a7b56b5b054/im3c00021_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/152dbcbedced/im3c00021_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/fb996965a8fe/im3c00021_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/4cf954b2f510/im3c00021_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/afa22cbebf27/im3c00021_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/8caec99cbe2e/im3c00021_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/a89f671619f8/im3c00021_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/d24d1b56412a/im3c00021_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/61b1408b794c/im3c00021_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/1140fae181c0/im3c00021_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ec/11504500/cafd73e76ceb/im3c00021_0010.jpg

相似文献

[1]
Tunable Nanomaterials of Intracellular Crystallization for In Situ Biolabeling and Biomedical Imaging.

Chem Biomed Imaging. 2023-3-30

[2]
Progress in the preparation of Prussian blue-based nanomaterials for biomedical applications.

J Mater Chem B. 2023-6-21

[3]
Controllable synthesis and biomedical applications of silver nanomaterials.

J Nanosci Nanotechnol. 2011-11

[4]
Graphene-Based Nanomaterials for Biomedical Imaging.

Adv Exp Med Biol. 2022

[5]
Plasmonic Oxygen Defects in MO (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications.

Adv Healthc Mater. 2021-12

[6]
Green and sustainable synthesis of nanomaterials: Recent advancements and limitations.

Environ Res. 2023-8-15

[7]
Biomedical Applications of Graphene Nanomaterials and Beyond.

ACS Biomater Sci Eng. 2018-8-13

[8]
Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

Acc Chem Res. 2014-1-7

[9]
Pharmaceutical and Biomedical Applications of Green Synthesized Metal and Metal Oxide Nanoparticles.

Curr Pharm Des. 2020

[10]
"Plasmonic Nanomaterials": An emerging avenue in biomedical and biomedical engineering opportunities.

J Adv Res. 2022-7

引用本文的文献

[1]
A pyroptosis proportion tunable nano-modulator for cancer immunotherapy.

Theranostics. 2025-7-25

[2]
Design Principles Of Inorganic-Protein Hybrid Materials for Biomedicine.

Exploration (Beijing). 2025-3-6

本文引用的文献

[1]
Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres.

ACS Nano. 2022-12-27

[2]
The molecular basis for pore pattern morphogenesis in diatom silica.

Proc Natl Acad Sci U S A. 2022-12-6

[3]
Polymer nanoparticles pass the plant interface.

Nat Commun. 2022-11-30

[4]
Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics.

Nat Chem. 2023-2

[5]
Structure of an amorphous calcium carbonate phase involved in the formation of shells.

Proc Natl Acad Sci U S A. 2022-11-8

[6]
Magnetosome-inspired synthesis of soft ferrimagnetic nanoparticles for magnetic tumor targeting.

Proc Natl Acad Sci U S A. 2022-11-8

[7]
The pursuit of polymethine fluorophores with NIR-II emission and high brightness for applications.

Chem Sci. 2022-8-27

[8]
Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy.

J Struct Biol. 2022-12

[9]
Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles.

Biosensors (Basel). 2022-9-25

[10]
Polymethine Molecular Platform for Ratiometric Fluorescent Probes in the Second near-Infrared Window.

J Am Chem Soc. 2022-11-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索