文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化纳米囊泡平台通过在黑色素瘤微环境中共同递送miR-150-3p,同时触发YAP依赖性铁死亡并重新编程T细胞免疫。

Engineered nanovesicle platform simultaneously triggers YAP-dependent ferroptosis and reprograms T-cell immunity through miR-150-3p codelivery in melanoma microenvironment.

作者信息

Wang Jiemin, Zhao Zhenguo, Yang Haopeng, Wang Ruixuan, Wang Shu, Yu Jiale, Wang Yujia, Liu Ruihua, Chen Yani, Liu Yueshi, Shi Kesong, Han Pengyong, Liu Miao, Miao Jing, Li Xiaoyang, Li Xiangnan, Yu Haiquan

机构信息

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, Inner Mongolia, China.

Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.

出版信息

Theranostics. 2025 Jul 25;15(16):8377-8403. doi: 10.7150/thno.115860. eCollection 2025.


DOI:10.7150/thno.115860
PMID:40860143
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12374587/
Abstract

Melanoma remains a highly aggressive malignancy with limited effective therapies and frequent resistance to immune checkpoint blockade (ICB). Extracellular vesicles (EVs) represent a promising platform for RNA-based therapeutics, but their clinical translation is impeded by inefficient cargo loading and insufficient tumor-specific targeting. To address these limitations, we developed an engineered EV strategy integrating efficient miRNA packaging with tumor-targeting surface modifications to enhance therapeutic outcomes in melanoma. Engineered EVs (iEV-150) were generated by co-expressing miR-150-3p and Annexin A2 (ANXA2) in HEK293T cells, followed by surface modification with tumor-targeting iRGD peptides. Mechanistic insights were obtained using RNA sequencing, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and luciferase reporter assays. Ferroptosis induction was evaluated through lipid peroxidation analysis, mitochondrial membrane potential assays, and transmission electron microscopy (TEM). Therapeutic efficacy and biodistribution were assessed using subcutaneous and metastatic melanoma mouse models. Immune modulation was examined by analyzing CD8⁺ T cell activation via flow cytometry in co-cultures of patient-derived CD8⁺ T cells and melanoma cells treated with iEV-150. miR-150-3p was elevated in melanoma-derived EVs, and ANXA2 was identified as a key RNA-binding protein that selectively facilitated its loading into EVs. iEV-150 exhibited enhanced uptake by melanoma cells and improved tumor-specific accumulation . Mechanistically, iEV-150 suppressed NF2 expression, disrupted the NF2-LATS1 interaction, activated YAP signaling, and subsequently upregulated ferroptosis-related genes ACSL4 and CHAC1, thereby inducing ferroptosis through the NF2-Hippo-YAP axis. In addition to its direct anti-tumor effects, iEV-150 promoted CD8⁺ T cell infiltration and activation within the tumor microenvironment, and significantly enhanced the therapeutic efficacy of ICB in melanoma models. iEV-150 integrates ANXA2-mediated miRNA loading, tumor-specific targeting, ferroptosis induction, and immune microenvironment reprogramming. This engineered EV strategy provides an effective RNA-based therapeutic platform to overcome ICB resistance and enhance precision treatment in melanoma.

摘要

黑色素瘤仍然是一种高度侵袭性的恶性肿瘤,有效治疗方法有限,且对免疫检查点阻断(ICB)常常产生耐药性。细胞外囊泡(EVs)是基于RNA的治疗方法的一个有前景的平台,但其临床转化受到货物装载效率低下和肿瘤特异性靶向不足的阻碍。为了解决这些局限性,我们开发了一种工程化的EV策略,将高效的miRNA包装与肿瘤靶向表面修饰相结合,以提高黑色素瘤的治疗效果。通过在HEK293T细胞中共表达miR-150-3p和膜联蛋白A2(ANXA2)来生成工程化的EV(iEV-150),随后用肿瘤靶向性iRGD肽进行表面修饰。使用RNA测序、RNA免疫沉淀(RIP)、染色质免疫沉淀(ChIP)和荧光素酶报告基因检测获得了机制性见解。通过脂质过氧化分析、线粒体膜电位检测和透射电子显微镜(TEM)评估铁死亡诱导情况。使用皮下和转移性黑色素瘤小鼠模型评估治疗效果和生物分布。通过在患者来源的CD8⁺T细胞与用iEV-150处理的黑色素瘤细胞的共培养物中通过流式细胞术分析CD8⁺T细胞活化来检查免疫调节。miR-150-3p在黑色素瘤来源的EVs中升高,并且ANXA2被鉴定为一种关键的RNA结合蛋白,其选择性地促进其装载到EVs中。iEV-150表现出黑色素瘤细胞对其摄取增强以及肿瘤特异性积累改善。从机制上讲,iEV-150抑制NF2表达,破坏NF2-LATS1相互作用,激活YAP信号传导,随后上调铁死亡相关基因ACSL4和CHAC1,从而通过NF2-Hippo-YAP轴诱导铁死亡。除了其直接的抗肿瘤作用外,iEV-150还促进了肿瘤微环境中CD8⁺T细胞的浸润和活化,并显著增强了ICB在黑色素瘤模型中的治疗效果。iEV-150整合了ANXA2介导的miRNA装载、肿瘤特异性靶向、铁死亡诱导和免疫微环境重编程。这种工程化的EV策略提供了一个有效的基于RNA的治疗平台,以克服ICB耐药性并增强黑色素瘤的精准治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/3ed539025246/thnov15p8377g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/54c33934bf46/thnov15p8377g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/fb8fc1121435/thnov15p8377g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/febf45f154a9/thnov15p8377g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/3d91f564361f/thnov15p8377g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/a1115d5cd1bb/thnov15p8377g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/1d9179a6a76a/thnov15p8377g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/c4eaccef15c8/thnov15p8377g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/eeec213566b8/thnov15p8377g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/3ed539025246/thnov15p8377g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/54c33934bf46/thnov15p8377g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/fb8fc1121435/thnov15p8377g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/febf45f154a9/thnov15p8377g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/3d91f564361f/thnov15p8377g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/a1115d5cd1bb/thnov15p8377g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/1d9179a6a76a/thnov15p8377g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/c4eaccef15c8/thnov15p8377g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/eeec213566b8/thnov15p8377g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a633/12374587/3ed539025246/thnov15p8377g009.jpg

相似文献

[1]
Engineered nanovesicle platform simultaneously triggers YAP-dependent ferroptosis and reprograms T-cell immunity through miR-150-3p codelivery in melanoma microenvironment.

Theranostics. 2025-7-25

[2]
Taurine Attenuates Neuronal Ferroptosis by CSF-Derived Exosomes of GABABR Encephalitis Through GABABR/NF2/P-YAP Pathway.

Mol Neurobiol. 2025-3-14

[3]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

[4]
Identification and validation of a KRAS-macrophage-associated gene signature as prognostic biomarkers and potential therapeutic targets in melanoma.

Front Immunol. 2025-6-18

[5]
M1 Macrophage-Derived TNF-α Promotes Pancreatic Cancer Ferroptosis Via p38 MAPK-ACSL4 Pathway.

Curr Mol Med. 2025-7-10

[6]
PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.

Clin Transl Oncol. 2025-1-18

[7]
Ribosomal protein L36-mediated selective loading of microRNA-4432 into extracellular vesicles contributes to perivascular cell dysfunction in venous malformations.

Br J Dermatol. 2025-3-18

[8]
Salvianic acid A enhances anti-PD-1 therapy by promoting HEV-mediated stem-like CD8 T cells infiltration in TNBC.

Cancer Immunol Immunother. 2025-6-30

[9]
Targeting Annexin A2 to reactivate tumor-associated antigens presentation and relieve immune tolerance in liver cancer.

J Immunother Cancer. 2025-6-26

[10]
YAP as a therapeutic target to reverse trastuzumab resistance.

Gastric Cancer. 2025-6-20

本文引用的文献

[1]
The Crosstalk with CXCL10-Rich Tumor-Associated Mast Cells Fuels Pancreatic Cancer Progression and Immune Escape.

Adv Sci (Weinh). 2025-4

[2]
Nanovesicles for Lipid Metabolism Reprogram-Enhanced Ferroptosis and Magnetotherapy of Refractory Tumors and Inhibiting Metastasis with Activated Innate Immunity.

ACS Nano. 2025-2-25

[3]
PD-L1 peptides in cancer immunoimaging and immunotherapy.

J Control Release. 2025-2-10

[4]
Myocardial delivery of miR30d with peptide-functionalized milk-derived extracellular vesicles for targeted treatment of hypertrophic heart failure.

Biomaterials. 2025-5

[5]
CHAC1: a master regulator of oxidative stress and ferroptosis in human diseases and cancers.

Front Cell Dev Biol. 2024-10-29

[6]
Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN.

J Extracell Vesicles. 2024-9

[7]
Extracellular vesicles-hitchhiking boosts the deep penetration of drugs to amplify anti-tumor efficacy.

Biomaterials. 2025-3

[8]
Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer.

Signal Transduct Target Ther. 2024-6-24

[9]
KLF4 suppresses anticancer effects of brusatol via transcriptional upregulating NCK2 expression in melanoma.

Biochem Pharmacol. 2024-5

[10]
Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy.

Adv Sci (Weinh). 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索