Shi Xiangguang, Xia Xueyi, Xiao Yang, Shu Huizhen, Xu Zhuoya, Liu Mengguo, Shi Chenyi, Zhang Ying, Wei Yining, Gong Yiyi, Wang Wei, Chen Yahui, Liu Jianlan, Huang Jia, Shi Mengkun, Wang Jiucun, Wu Wenyu
Department of Dermatology, Huashan Hospital, Deptartment of Allergy and immunology, Huashan Hospital, and Research Center of Allergy and Diseases, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
Department of Dermatology, Jing'an District Central Hospital, Shanghai, China.
Int J Biol Sci. 2025 Jul 28;21(11):5097-5115. doi: 10.7150/ijbs.114930. eCollection 2025.
Keloids are a challenging fibrotic disorder with limited treatment options. The study sought to examine the underlying mechanisms of keloid pathogenesis, emphasizing the influence of dermal adipocytes and ferroptosis resistance in driving fibrosis. Single-cell RNA sequencing (scRNA-seq) was employed for determining essential cell populations in keloid tissue. Mechanistic studies assessed iron overload, Reactive Oxygen Species (ROS) exhaustion, and interferon responses in ferroptosis-resistant adipocytes. Glutathione peroxidase 4 (GPX4) expression and TGF-β signaling activation were evaluated in adipocyte-mesenchymal transition (AMT). Paracrine signaling and metabolic symbiosis between adipocytes and fibroblasts were analyzed. Therapeutic interventions (ferroptosis inducer RSL3 and iron chelator deferoxamine DFO) were tested . Through single-cell RNA sequencing, we identified ferroptosis-resistant dermal adipocytes as key contributors to keloid pathogenesis, exhibiting iron overload, ROS suppression, and impaired interferon responses. These adipocytes demonstrated elevated GPX4 expression, which mechanistically drove AMT via iron-dependent activation of TGF-β signaling pathways. GPX4-activated adipocytes promoted fibroblast collagen production through paracrine signaling while establishing a metabolic symbiosis: adipocytes exported iron via solute carrier family 40 member 1 (SLC40A1) to neighboring fibroblasts, which reciprocally supplied cystine through cystathionine beta-synthase (CBS)/cystinosin, lysosomal cystine transporter (CTNS) to sustain GPX4 activity. This vicious cycle was further amplified by iron/ROS-mediated suppression of interferon signaling, creating a pro-fibrotic feedback loop. Therapeutic targeting with either the ferroptosis inducer RSL3 or iron chelator deferoxamine (DFO) effectively disrupted this pathological network, suppressing GPX4/AMT while restoring interferon responses and attenuating keloid growth . This study clarifies a new adipocyte-focused mechanism in keloid development and identifies ferroptosis regulation as a potential treatment approach for this persistent condition. Conclusions: This study reveals a novel adipocyte-centered mechanism in keloid pathogenesis driven by GPX4-mediated ferroptosis resistance, metabolic symbiosis, and disrupted interferon signaling The findings establish ferroptosis modulation (via RSL3 or iron chelation) as a promising therapeutic strategy for keloids, offering potential new treatments for this recalcitrant condition.
瘢痕疙瘩是一种具有挑战性的纤维化疾病,治疗选择有限。该研究旨在探讨瘢痕疙瘩发病机制的潜在机制,强调真皮脂肪细胞和铁死亡抗性在驱动纤维化中的影响。采用单细胞RNA测序(scRNA-seq)来确定瘢痕疙瘩组织中的关键细胞群。机制研究评估了铁过载、活性氧(ROS)耗竭以及铁死亡抗性脂肪细胞中的干扰素反应。在脂肪细胞-间充质转化(AMT)中评估了谷胱甘肽过氧化物酶4(GPX4)的表达和转化生长因子-β(TGF-β)信号激活。分析了脂肪细胞与成纤维细胞之间的旁分泌信号和代谢共生关系。测试了治疗干预措施(铁死亡诱导剂RSL3和铁螯合剂去铁胺DFO)。通过单细胞RNA测序,我们确定铁死亡抗性真皮脂肪细胞是瘢痕疙瘩发病机制的关键因素,表现出铁过载、ROS抑制和干扰素反应受损。这些脂肪细胞表现出GPX4表达升高,其通过铁依赖性激活TGF-β信号通路在机制上驱动AMT。GPX4激活的脂肪细胞通过旁分泌信号促进成纤维细胞胶原蛋白的产生,同时建立代谢共生关系:脂肪细胞通过溶质载体家族40成员1(SLC40A1)将铁输出到邻近的成纤维细胞,而成纤维细胞则通过胱硫醚β-合酶(CBS)/胱氨酸转运体(CTNS,溶酶体胱氨酸转运体)相互供应胱氨酸以维持GPX4活性。铁/ROS介导的干扰素信号抑制进一步放大了这个恶性循环,形成了一个促纤维化反馈回路。用铁死亡诱导剂RSL3或铁螯合剂去铁胺(DFO)进行治疗靶向有效地破坏了这个病理网络,抑制了GPX4/AMT,同时恢复了干扰素反应并减轻了瘢痕疙瘩的生长。这项研究阐明了瘢痕疙瘩发展中一种新的以脂肪细胞为中心的机制,并确定铁死亡调节是这种顽固性疾病的一种潜在治疗方法。结论:本研究揭示了一种由GPX4介导的铁死亡抗性、代谢共生和干扰素信号破坏驱动的瘢痕疙瘩发病机制中以脂肪细胞为中心的新机制。研究结果确立了铁死亡调节(通过RSL3或铁螯合)作为瘢痕疙瘩的一种有前景的治疗策略,为这种难治性疾病提供了潜在的新治疗方法。
Microbiol Spectr. 2025-6-23
Front Biosci (Landmark Ed). 2025-6-27
Cell Metab. 2025-3-4
Cell Metab. 2025-3-4
J Cell Biochem. 2024-7
Eur J Med Chem. 2024-8-5