Song Jun, Amyotte Beatrice, Palmer Leslie Campbell, Vinqvist-Tymchuk Melinda, Dougherty Kyra, Da Ros Letitia
Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada.
Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, 95 Innovation Rd, Fredericton, New Brunswick, E3B 4Z7, Canada.
Hortic Res. 2025 Aug 12;12(9):uhaf159. doi: 10.1093/hr/uhaf159. eCollection 2025 Sep.
Apple () is one of the most popular fruits grown and consumed worldwide, contributing to human health with significant amounts of polyphenols and other bioactive compounds, and providing positive impacts to the economy and society. Understanding the diversity and inheritance of health-active compounds in apple can provide novel selection criteria for future breeding and cultivar development, as consumers increasingly prioritize the health benefits of their food choices. We therefore conducted an untargeted metabolomic analysis using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) to investigate thousands of semipolar chemicals, mainly phenolic compounds, in 439 diverse apple accessions, and quantified 2066 features in positive ion mode. To identify key areas of genetic control for apple metabolite abundance, we performed a metabolomic genome-wide association study (mGWAS) on the quantified mass features using ~280 000 single nucleotide polymorphisms (SNPs). The mGWAS revealed >630 significant loci with hotspots for various groups of known and unknown phenolic compounds including flavonols on Chromosome 1, dihydrochalcones on Chromosome 5, and flavanols on Chromosomes 15 and 16. The most significant hotspot on Chromosome 16 included bHLH and C2H2 transcription factors that may play a role in controlling the abundance and complexity of phenolic compounds through regulation of the flavonoid biosynthesis pathway. Our analysis links the apple metabolome with candidate genes and biosynthetic mechanisms and establishes a foundation for marker-assisted breeding and gene editing to improve and modify phenolic compounds in apple for marketability and the benefit of human health.
苹果是全球种植和消费最为广泛的水果之一,其富含大量多酚和其他生物活性化合物,对人类健康有益,同时也对经济和社会产生积极影响。随着消费者越来越注重食物选择的健康益处,了解苹果中具有健康活性的化合物的多样性和遗传特性可为未来的育种和品种开发提供新的选择标准。因此,我们使用超高效液相色谱 - 质谱联用仪(UPLC-MS)进行了非靶向代谢组学分析,以研究439份不同苹果种质中的数千种半极性化学物质,主要是酚类化合物,并在正离子模式下对2066个特征峰进行了定量分析。为了确定苹果代谢物丰度的遗传控制关键区域,我们使用约280,000个单核苷酸多态性(SNP)对定量后的质谱特征进行了代谢组全基因组关联研究(mGWAS)。mGWAS揭示了超过630个显著位点,这些位点是各种已知和未知酚类化合物的热点区域,包括第1号染色体上的黄酮醇、第5号染色体上的二氢查耳酮以及第15号和第16号染色体上的黄烷醇。第16号染色体上最显著的热点区域包括bHLH和C2H2转录因子,它们可能通过调控类黄酮生物合成途径在控制酚类化合物的丰度和复杂性方面发挥作用。我们的分析将苹果代谢组与候选基因及生物合成机制联系起来,为标记辅助育种和基因编辑奠定了基础,以便改良和修饰苹果中的酚类化合物,提高其市场价值并造福人类健康。