Ramos-Terrón Susana, Martín Cristina, de Miguel Gustavo, Solano Eduardo, Hermida-Merino Daniel, Van de Vondel Joris, Hofkens Johan, Keshavarz Masoumeh
Departamento de Química Física y Termodinámica Aplicada, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales Edificio Marie Cure E-14071 Córdoba Spain
Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha 02071 Albacete Spain.
RSC Adv. 2025 Aug 8;15(34):28181-28190. doi: 10.1039/d5ra03422a. eCollection 2025 Aug 1.
The optical properties of the metal halide perovskites (MHPs) have been modulated by replacing the typical A-site cations or, alternatively, by using different halides (I, Br or Cl) in the chemical composition. In this study, a combined strategy involving A-site cation engineering and halide tuning precursor engineering has been employed to investigate its impact on the structural and optical properties of BA(MA )PbX (BA = butylammonium, MA = methylammonium, A = A-site cation, X = I, Br) two-dimensional (2D) perovskite. The substitution of guanidinium (Gua) and ethylammonium (EA) for methylammonium (MA), along with the use of Br instead of I as anions, was systematically analyzed. The obtained results demonstrate that these modifications significantly alter the dimensionality of the perovskite, favoring the formation of lower -phases and resulting in blue-shifted absorption and photoluminescence due to quantum confinement. By adjusting the Gua/EA and I/Br content in the precursor solution, precise control of photoluminescence band position was achieved. The relevance of these findings was demonstrated as a proof-of-concept by fabricating light-emitting devices (LEDs), where the electroluminescence closely followed the compositional adjustments. Notably, Gua-based perovskites with Br anions exhibited enhanced LED performance due to optimal phase distribution. This research advances the understanding of structure-properties relationships and highlights the potential of composition engineering for innovative optical applications.
通过取代典型的A位阳离子,或者在化学组成中使用不同的卤化物(碘、溴或氯),金属卤化物钙钛矿(MHP)的光学性质已得到调控。在本研究中,采用了一种涉及A位阳离子工程、卤化物调控和前驱体工程的联合策略,来研究其对BA(MA )PbX(BA = 丁基铵,MA = 甲基铵,A = A位阳离子,X = 碘、溴)二维(2D)钙钛矿结构和光学性质的影响。系统分析了用胍(Gua)和乙铵(EA)取代甲基铵(MA),以及使用溴代替碘作为阴离子的情况。所得结果表明,这些改性显著改变了钙钛矿的维度,有利于形成低相,并由于量子限制导致吸收和光致发光发生蓝移。通过调整前驱体溶液中的Gua/EA和碘/溴含量,实现了对光致发光带位置的精确控制。通过制造发光器件(LED)作为概念验证,证明了这些发现的相关性,其中电致发光紧密跟随成分调整。值得注意的是,含溴阴离子的胍基钙钛矿由于最佳的相分布而表现出增强的LED性能。这项研究推进了对结构-性质关系的理解,并突出了成分工程在创新光学应用中的潜力。