Yan Rongjing, Hao Qiang, Wathudura Pathum, Wamsley Max, Collier Willard E, Zhang Dongmao
Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39759, United States.
Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States.
ACS Meas Sci Au. 2025 Jun 6;5(4):477-488. doi: 10.1021/acsmeasuresciau.5c00022. eCollection 2025 Aug 20.
Dynamic systems, defined by their continuous temporal evolution, are central to advancements in chemistry, biology, and materials science. Optical techniques that leverage light absorption, scattering, and emission are essential for characterizing structural and property changes in these systems. However, conventional optical toolssuch as UV-vis spectroscopy, fluorescence, and scattering techniquesprovide fragmented or incomplete insights, making it challenging to comprehensively understand dynamic processes and ensure reliable data interpretation. Herein, we introduce a charge-coupled device (CCD)-based multitrack linearly polarized spectrometer (MLPS) designed for simultaneous kinetic UV-vis, polarization-resolved scattering, and photoluminescence measurements. The MLPS facilitates concurrent quantification of scattering and fluorescence intensities and depolarizations, alongside UV-vis extinction, with subsecond temporal resolution. By integrating high temporal resolution with the ability to capture complementary spectra, the MLPS significantly enhances the functionality of optical spectroscopy, paving the way for broader applications in dynamic system analysis and advancing research across multiple scientific disciplines. Furthermore, the instrument characterization and data preprocessing methodologies presented here provide valuable insights for the future development of multitrack CCD-based spectrometers.
动态系统由其连续的时间演化定义,是化学、生物学和材料科学进步的核心。利用光吸收、散射和发射的光学技术对于表征这些系统中的结构和性质变化至关重要。然而,传统的光学工具,如紫外可见光谱、荧光和散射技术,提供的是碎片化或不完整的见解,使得全面理解动态过程并确保可靠的数据解释具有挑战性。在此,我们介绍一种基于电荷耦合器件(CCD)的多通道线性偏振光谱仪(MLPS),其设计用于同时进行动力学紫外可见、偏振分辨散射和光致发光测量。MLPS有助于同时定量散射和荧光强度及去极化,以及紫外可见消光,具有亚秒级的时间分辨率。通过将高时间分辨率与捕获互补光谱的能力相结合,MLPS显著增强了光谱学的功能,为动态系统分析的更广泛应用铺平了道路,并推动了多个科学学科的研究进展。此外,这里介绍的仪器表征和数据预处理方法为基于多通道CCD的光谱仪的未来发展提供了有价值的见解。