Fang Dawei, Suo Shilong, Fu Donglu, Liang Kunhao, Qiao Jing, Song Zongren
Institute of Rare and Scattered Elements, College of Chemistry, Liaoning University Shenyang Liaoning 110036 China
Shenyang Institute of Science and Technology Shenyang Liaoning 110167 China.
RSC Adv. 2025 Aug 18;15(35):29089-29096. doi: 10.1039/d5ra05236j. eCollection 2025 Aug 11.
In the context of the global energy transition, the efficient extraction of lithium resources has become a critical link in the new energy industry chain. Addressing challenges such as poor selectivity, low adsorption capacity, and environmental concerns in extracting lithium from salt lake brines, this study developed a novel aluminum-based adsorbent/zeolite molecular sieve composite adsorbent (LiAl-LDHs/ZSM-5). The material was constructed with a hierarchical porous structure through seed-assisted synthesis of the ZSM-5 molecular sieve carrier, followed by hydrothermal growth of lithium-aluminum layered double hydroxide (LiAl-LDHs). Systematic characterization XRD, FT-IR, and SEM confirmed its crystal structure, functional group distribution, and micro-morphology. Single-factor experiments optimized key parameters (ZSM-5 : LiAl-LDHs = 1 : 2) and adsorption conditions (pH = 7, = 25 °C, = 10 g L). Kinetic analysis revealed that the adsorption conformed to the pseudo-second-order model, indicating chemisorption-dominated mechanisms. The composite demonstrated high selectivity (Li Mg = 188.13) and recyclability in authentic salt lake brine, offering an environmentally friendly solution for exploiting high Mg/Li ratio resources.
在全球能源转型的背景下,锂资源的高效提取已成为新能源产业链中的关键环节。为应对从盐湖卤水中提取锂时选择性差、吸附容量低和环境问题等挑战,本研究开发了一种新型铝基吸附剂/沸石分子筛复合吸附剂(LiAl-LDHs/ZSM-5)。该材料通过种子辅助合成ZSM-5分子筛载体构建具有分级多孔结构,随后进行锂铝层状双氢氧化物(LiAl-LDHs)的水热生长。通过XRD、FT-IR和SEM等系统表征证实了其晶体结构、官能团分布和微观形貌。单因素实验优化了关键参数(ZSM-5 : LiAl-LDHs = 1 : 2)和吸附条件(pH = 7, = 25 °C, = 10 g L)。动力学分析表明吸附符合准二级模型,表明以化学吸附为主导机制。该复合材料在真实盐湖卤水中表现出高选择性(Li Mg = 188.13)和可回收性,为开发高镁锂比资源提供了一种环境友好的解决方案。