Hognon Cécilia, Ben Abdeljaoued Ameni, Hardouin Pierre, Etheve-Quelquejeu Mélanie, Sargueil Bruno, Laage Damien, Frezza Elisa
Université Paris Cité, CiTCoM, CNRS, F-75006 Paris, France.
Université Paris Cité, LCBPT, CNRS, F-75006 Paris, France.
J Chem Inf Model. 2025 Sep 8;65(17):9230-9250. doi: 10.1021/acs.jcim.5c00812. Epub 2025 Aug 27.
Ribonucleic acid (RNA) molecules play a crucial role in nearly every cellular process, with their function closely tied to their three-dimensional (3D) structure. As a result, determining the precise 3D structure of RNAs is essential to understanding their biological functions. However, obtaining high-resolution 3D structures remains a significant challenge with traditional biophysical techniques. To address this, chemical probing methods such as SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) have gained widespread popularity. SHAPE reactivities have been introduced in 2D RNA predictors as soft constraints on nucleotide base pairing, although the acylation reaction involves the ribose moiety. Little is known about the physical chemistry behind this reaction, leaving several reactivities unexplained. In this context, our aim is to unveil the complex relationship between the local structure of RNA, its dynamics, and the SHAPE chemical reactivity. In this study, using a multiscale approach based on biased molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations on the well characterized GAAA RNA tetraloop, we provide new molecular insights on the prereactive complex and its binding mode. Our findings emphasize the critical role of the local environment in facilitating the recruitment and proper accommodation of the SHAPE probe. All-atom umbrella sampling (US) molecular dynamics (MD) simulations underscored the significance of the binding angle in forming the prereactive complex, which was thoroughly analyzed using geometrical descriptors. In US QM/MM simulations, we used different initial structures to demonstrate the effect of favorable binding on the acylation reaction by characterizing the first step. Moreover, we investigated the deprotonation of the hydroxyl and its role in the acylation reaction, highlighting the role of the local environment and the probe proximity in this process. Our results suggest that the formation of oxyanion prior to the binding is not required to initiate the chemical reaction.
核糖核酸(RNA)分子在几乎每一个细胞过程中都发挥着关键作用,其功能与三维(3D)结构紧密相关。因此,确定RNA精确的三维结构对于理解其生物学功能至关重要。然而,使用传统生物物理技术获得高分辨率的三维结构仍然是一项重大挑战。为了解决这个问题,诸如SHAPE(通过引物延伸分析的选择性2'-羟基酰化)等化学探测方法已广泛流行。尽管酰化反应涉及核糖部分,但SHAPE反应性已被引入二维RNA预测器中,作为对核苷酸碱基配对的软约束。关于该反应背后的物理化学知之甚少,导致一些反应性无法解释。在此背景下,我们的目标是揭示RNA局部结构、其动力学与SHAPE化学反应性之间的复杂关系。在本研究中,我们基于对特征明确的GAAA RNA四环进行的有偏分子动力学模拟和量子力学/分子力学(QM/MM)计算,采用多尺度方法,对反应前复合物及其结合模式提供了新的分子见解。我们的研究结果强调了局部环境在促进SHAPE探针的募集和适当容纳方面的关键作用。全原子伞形采样(US)分子动力学(MD)模拟强调了结合角在形成反应前复合物中的重要性,我们使用几何描述符对其进行了深入分析。在US QM/MM模拟中,我们使用不同的初始结构,通过表征第一步来证明有利结合对酰化反应的影响。此外,我们研究了羟基的去质子化及其在酰化反应中的作用,突出了局部环境和探针接近度在此过程中的作用。我们的结果表明,在结合之前形成氧阴离子并非引发化学反应所必需的。