Suppr超能文献

一种用于贸易枢纽选址与分配方法的新型人工鹰启发式优化算法。

A Novel Artificial Eagle-Inspired Optimization Algorithm for Trade Hub Location and Allocation Method.

作者信息

Hu Shuhan, Hu Gang, Du Bo, Hussien Abdelazim G

机构信息

Department of Applied Mathematics, Xi'an University of Technology, Xi'an 710054, China.

Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Biomimetics (Basel). 2025 Jul 22;10(8):481. doi: 10.3390/biomimetics10080481.

Abstract

Aiming for convenience and the low cost of goods transfer between towns, this paper proposes a trade hub location and allocation method based on a novel artificial eagle-inspired optimization algorithm. Firstly, the trade hub location and allocation model is established, taking the total cost consisting of construction and transportation costs as the objective function. Then, to solve the nonlinear model, a novel artificial eagle optimization algorithm (AEOA) is proposed by simulating the collective migration behaviors of artificial eagles when facing a severe living environment. Three main strategies are designed to help the algorithm effectively explore the decision space: the situational awareness and analysis stage, the free exploration stage, and the flight formation integration stage. In the first stage, artificial eagles are endowed with intelligent thinking, thus generating new positions closer to the optimum by perceiving the current situation and updating their positions. In the free exploration stage, artificial eagles update their positions by drawing on the current optimal position, ensuring more suitable habitats can be found. Meanwhile, inspired by the consciousness of teamwork, a formation flying method based on distance information is introduced in the last stage to improve stability and success rate. Test results from the CEC2022 suite indicate that the AEOA can obtain better solutions for 11 functions out of all 12 functions compared with 8 other popular algorithms. Faster convergence speed and stronger stability of the AEOA are also proved by quantitative analysis. Finally, the trade hub location and allocation method is proposed by combining the optimization model and the AEOA. By solving two typical simulated cases, this method can select suitable hubs with lower construction costs and achieve reasonable allocation between hubs and the rest of the towns to reduce transportation costs. Thus, it is used to solve the trade hub location and allocation problem of Henan province in China to help the government make sound decisions.

摘要

为了实现城镇之间货物转运的便利性和低成本,本文提出了一种基于新型人工鹰启发式优化算法的贸易枢纽选址与分配方法。首先,建立了以建设成本和运输成本之和为目标函数的贸易枢纽选址与分配模型。然后,为求解该非线性模型,通过模拟人工鹰在恶劣生存环境下面临的集体迁徙行为,提出了一种新型人工鹰优化算法(AEOA)。设计了三种主要策略来帮助该算法有效探索决策空间:态势感知与分析阶段、自由探索阶段和飞行编队整合阶段。在第一阶段,赋予人工鹰智能思维,使其通过感知当前情况并更新位置来生成更接近最优解的新位置。在自由探索阶段,人工鹰借鉴当前最优位置来更新自身位置,以确保能找到更适宜的栖息地。同时,受团队合作意识启发,在最后阶段引入基于距离信息的编队飞行方法,以提高稳定性和成功率。来自CEC2022测试集的结果表明,与其他8种流行算法相比,AEOA在12个函数中的11个函数上能获得更好的解。定量分析也证明了AEOA具有更快的收敛速度和更强的稳定性。最后,结合优化模型和AEOA提出了贸易枢纽选址与分配方法。通过求解两个典型模拟案例,该方法能够选择建设成本较低的合适枢纽,并在枢纽与其他城镇之间实现合理分配,以降低运输成本。因此,它被用于解决中国河南省的贸易枢纽选址与分配问题,以帮助政府做出合理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552c/12383919/5a2e44276ff9/biomimetics-10-00481-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验