Suppr超能文献

基于进化膜算法的自动深度脉冲神经网络设计

Auto Deep Spiking Neural Network Design Based on an Evolutionary Membrane Algorithm.

作者信息

Liu Chuang, Wang Haojie

机构信息

School of Intelligent Science and Information Engineering, Shenyang University, Shenyang 110044, China.

出版信息

Biomimetics (Basel). 2025 Aug 6;10(8):514. doi: 10.3390/biomimetics10080514.

Abstract

In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the DSNN's performance, resulting in significant consumption of human and hardware resources. To address these challenges, this paper proposes an innovative evolutionary membrane algorithm for optimizing DSNN architectures. This algorithm automates the construction and design of promising network models, thereby reducing reliance on manual tuning. More specifically, the architecture of DSNN is transformed into the search space of the proposed evolutionary membrane algorithm. The proposed algorithm thoroughly explores the impact of hyperparameters, such as the candidate operation blocks of DSNN, to identify optimal configurations. Additionally, an early stopping strategy is adopted in the performance evaluation phase to mitigate the time loss caused by objective evaluations, further enhancing efficiency. The optimal models identified by the proposed algorithm were evaluated on the CIFAR-10 and CIFAR-100 datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, showing significant improvements in accuracy compared to the existing state-of-the-art methods. This work highlights the potential of evolutionary membrane algorithms to streamline the design and optimization of DSNN architectures, offering a novel and efficient approach to address the challenges in the applications of automated parameter optimization for DSNN.

摘要

在科学研究和工程实践中,深度脉冲神经网络(DSNN)架构的设计仍然是一项复杂的任务,严重依赖专业人员的专业知识和经验。这些架构通常需要根据DSNN的性能等因素进行反复调整和修改,从而大量消耗人力和硬件资源。为应对这些挑战,本文提出了一种用于优化DSNN架构的创新进化膜算法。该算法可自动构建和设计有前景的网络模型,从而减少对人工调优的依赖。更具体地说,DSNN的架构被转换为所提出的进化膜算法的搜索空间。所提出的算法全面探索了超参数的影响,例如DSNN的候选操作块,以确定最优配置。此外,在性能评估阶段采用了早期停止策略,以减轻客观评估造成的时间损失,进一步提高效率。在所提出的算法识别出的最优模型在CIFAR-10和CIFAR-100数据集上进行了评估。实验结果证明了所提出算法的有效性,与现有的最先进方法相比,在准确率上有显著提高。这项工作突出了进化膜算法在简化DSNN架构设计和优化方面的潜力,为应对DSNN自动参数优化应用中的挑战提供了一种新颖且高效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8097/12383992/94ed99b7ef0a/biomimetics-10-00514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验