Asif Ibrar Muhammad, Di Giulio Tiziano, Gagliani Francesco, Malitesta Cosimino, Mazzotta Elisabetta
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via per Monteroni, 73100 Lecce, LE, Italy.
Biosensors (Basel). 2025 Aug 6;15(8):509. doi: 10.3390/bios15080509.
Molecularly imprinted polymers (MIPs) have emerged as robust, cost-effective analogues of bioreceptors, offering high selectivity and stability. When applied in sensors, one key step is the integration of MIPs with the transducer, which critically affects sensor performance. Demanding challenges come when such integration involves nanoscaling processes, meaning that the transducer is nanostructured or the MIP itself is nanosized on a bulk transducer. In both cases, the integration results in the development of nanosensors, with advantages arising from the nanoscale, such as a high MIP surface-to-volume ratio, with surface-located, easily accessible binding sites, fast binding kinetics, and, thus, a rapid sensor response. Major advantages come also from nanostructured transducers, with nanoscale geometry enabling highly sensitive signal generation processes, not allowed on their bulk counterparts. In this review, we discuss advances in imprinting technologies, focusing on techniques that, enabling the nanoscale control of MIP synthesis, are conveniently applied to directly integrate MIPs with nanosensors in a one-step process. Two main approaches are reviewed, consisting in MIP nanostructuring on bulk transducers and in the direct growth of MIPs on nanotransducers, highlighting how different strategies achieve good conformity at the nanoscale and address spatial complexity to ensure stable and accurate signal acquisition. Finally, we consider future directions in MIP-based nanosensor development.
分子印迹聚合物(MIPs)已成为生物受体强大且经济高效的类似物,具有高选择性和稳定性。应用于传感器时,关键步骤之一是将MIPs与换能器集成,这对传感器性能至关重要。当这种集成涉及纳米尺度过程时,就会面临严峻挑战,这意味着换能器是纳米结构的,或者MIP本身在块状换能器上是纳米尺寸的。在这两种情况下,集成都会导致纳米传感器的发展,其优势源于纳米尺度,例如高MIP表面体积比、表面定位且易于接近的结合位点、快速的结合动力学,因此传感器响应迅速。主要优势还来自纳米结构的换能器,其纳米尺度几何形状能够实现高度敏感的信号生成过程,而其块状对应物则无法做到。在本综述中,我们讨论了印迹技术的进展,重点关注能够实现MIP合成纳米尺度控制、方便地应用于在一步过程中将MIPs与纳米传感器直接集成的技术。综述了两种主要方法,包括在块状换能器上进行MIP纳米结构化以及在纳米换能器上直接生长MIPs,突出了不同策略如何在纳米尺度上实现良好的一致性并解决空间复杂性以确保稳定和准确的信号采集。最后,我们考虑了基于MIP的纳米传感器发展的未来方向。