Suppr超能文献

基于可持续生物材料的MIL-53金属有机框架通过高效释放青霉素G对革兰氏阴性菌和革兰氏阳性菌进行抗菌评估

MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against and Bacteria by Efficient Release of Penicillin G.

作者信息

Ávila-Márquez Delia Monserrat, Blanco Flores Alien, Toledo Jaldin Helen Paola, Burke Irazoque Mateo, González Torres Maribel, Vilchis-Nestor Alfredo Rafael, Toledo Carla Calderon, Gutiérrez-Cortez Sergio, Díaz Rodríguez Juan Pablo, Dorazco-González Alejandro

机构信息

Mechanical Engineering Division, Technological of Superior Studies of Tianguistenco, National Technological of Mexico, Santiago Tianguistenco 52650, Mexico.

Institute of Metallurgy, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.

出版信息

J Funct Biomater. 2025 Aug 15;16(8):295. doi: 10.3390/jfb16080295.

Abstract

The development of efficient antibiotic-releasing materials derived from sustainable and recyclable compounds represents a key area within biomedical materials science, particularly in the treatment of antibacterial infections. Herein, a Fe/terephthalate-based metal-organic framework () and a novel advanced material made of with biogenic hydroxyapatite () were prepared by solvothermal reactions, and these were studied in detail as a Penicillin-G-releasing material. After loading Penicillin G on and , the antibiotic percentage release was studied, and the antimicrobial effectiveness of each material was evaluated against two bacterial ATCC strains ( and ) and various Penicillin-G-resistant uropathogenic strains such as isolates (HHM 25, ERV 6, and FGI 4). Functional, structural, and morphological characteristics of these materials were thoroughly studied by analytical tools (FTIR, XRD, BET, SEM-EDS, and XPS). The Penicillin G load did not exceed 50% in both materials. The Penicillin G adsorption mechanism involves several types of interactions with the materials. The release of the antibiotic was more efficient from , where the load did not exceed 20%. The release was analyzed using mathematical models. They indicated that when Penicillin G is released from , the process follows diffusion through a uniform matrix; however, is more porous, which helps with the release by diffusion of Penicillin G, and exhibits more than a 90% inhibition of the growth of bacteria and strains like . This suggests a valuable approach to antibiotic activity against resistant pathogens. The use of composite materials derived from the Fe-MOF with a sustainable matrix of hydroxyapatite as antibiotic-releasing materials has been unexplored until now.

摘要

开发源自可持续且可回收化合物的高效抗生素释放材料是生物医学材料科学的一个关键领域,尤其是在抗菌感染治疗方面。在此,通过溶剂热反应制备了一种基于铁/对苯二甲酸酯的金属有机框架()以及一种由生物源羟基磷灰石()制成的新型先进材料,并将其作为青霉素G释放材料进行了详细研究。在将青霉素G负载到和上之后,研究了抗生素的百分比释放情况,并评估了每种材料对两种细菌ATCC菌株(和)以及各种耐青霉素G的尿路致病性菌株(如分离株HHM 25、ERV 6和FGI 4)的抗菌效果。通过分析工具(傅里叶变换红外光谱、X射线衍射、比表面积分析仪、扫描电子显微镜 - 能谱仪和X射线光电子能谱)对这些材料的功能、结构和形态特征进行了深入研究。两种材料中青霉素G的负载量均不超过50%。青霉素G的吸附机制涉及与材料的几种相互作用类型。抗生素从负载量不超过20%的中释放效率更高。使用数学模型对释放情况进行了分析。结果表明,当青霉素G从中释放时,该过程遵循通过均匀基质的扩散;然而,孔隙率更高,这有助于青霉素G通过扩散释放,并且对如等细菌和菌株的生长表现出超过90%的抑制作用。这表明了一种对抗耐药病原体具有抗生素活性的有价值方法。直到现在,将源自铁基金属有机框架且具有可持续羟基磷灰石基质的复合材料用作抗生素释放材料的应用尚未得到探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e0/12387357/4e4e385655df/jfb-16-00295-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验