Suppr超能文献

一种基于线结构光的柑橘果瓣分割线检测视觉方法。

A Vision Method for Detecting Citrus Separation Lines Using Line-Structured Light.

作者信息

Yu Qingcang, Xue Song, Zheng Yang

机构信息

School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.

出版信息

J Imaging. 2025 Aug 8;11(8):265. doi: 10.3390/jimaging11080265.

Abstract

The detection of citrus separation lines is a crucial step in the citrus processing industry. Inspired by the achievements of line-structured light technology in surface defect detection, this paper proposes a method for detecting citrus separation lines based on line-structured light. Firstly, a gamma-corrected Otsu method is employed to extract the laser stripe region from the image. Secondly, an improved skeleton extraction algorithm is employed to mitigate the bifurcation errors inherent in original skeleton extraction algorithms while simultaneously acquiring 3D point cloud data of the citrus surface. Finally, the least squares progressive iterative approximation algorithm is applied to approximate the ideal surface curve; subsequently, principal component analysis is used to derive the normals of this ideally fitted curve. The deviation between each point (along its corresponding normal direction) and the actual geometric characteristic curve is then adopted as a quantitative index for separation lines positioning. The average similarity between the extracted separation lines and the manually defined standard separation lines reaches 92.5%. In total, 95% of the points on the separation lines obtained by this method have an error of less than 4 pixels. Experimental results demonstrate that through quantitative deviation analysis of geometric features, automatic detection and positioning of the separation lines are achieved, satisfying the requirements of high precision and non-destructiveness for automatic citrus splitting.

摘要

柑橘分离线的检测是柑橘加工业中的关键步骤。受线结构光技术在表面缺陷检测方面所取得成果的启发,本文提出了一种基于线结构光的柑橘分离线检测方法。首先,采用伽马校正的大津法从图像中提取激光条纹区域。其次,采用改进的骨架提取算法来减轻原始骨架提取算法中固有的分叉误差,同时获取柑橘表面的三维点云数据。最后,应用最小二乘渐进迭代逼近算法来拟合理想表面曲线;随后,使用主成分分析来推导该理想拟合曲线的法线。然后,将每个点(沿其相应法线方向)与实际几何特征曲线之间的偏差用作分离线定位的定量指标。提取的分离线与手动定义的标准分离线之间的平均相似度达到92.5%。通过该方法获得的分离线上95%的点的误差小于4个像素。实验结果表明,通过对几何特征进行定量偏差分析,实现了分离线的自动检测与定位,满足了柑橘自动剖切高精度和无损的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e7/12387447/e88d9fba321c/jimaging-11-00265-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验