El Arab Rabie Adel, Al Moosa Omayma Abdulaziz, Albahrani Zahraa, Alkhalil Israa, Somerville Joel, Abuadas Fuad
Almoosa College of Health Sciences, Alhsa 36422, Saudi Arabia.
Almoosa Specialist Hospital, Alhsa 36342, Saudi Arabia.
Nurs Rep. 2025 Jul 31;15(8):281. doi: 10.3390/nursrep15080281.
Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7-11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes.
人工智能(AI)和机器学习(ML)通过提高围产期连续过程中的风险预测、诊断准确性和运营效率,一直在重塑孕产妇、胎儿、新生儿和生殖健康护理。然而,尚未发表全面的综述。为了对涵盖生殖、产前、产后、新生儿和幼儿发育护理的人工智能/机器学习应用的综述进行范围综述。我们检索了截至2025年4月的PubMed、Embase、Cochrane图书馆、科学网和Scopus。两名评审员独立筛选记录、提取数据,并使用AMSTAR 2进行系统综述的方法学质量评估、使用ROBIS进行偏倚评估、使用SANRA进行叙述性综述评估以及使用JBI指南进行范围综述评估。三十九篇综述符合我们的纳入标准。在孕前和生育治疗中,基于卷积神经网络的平台能够以超过90%的准确率识别 viable胚胎和关键精子参数,机器学习模型能够个性化促卵泡激素方案,以提高成熟卵母细胞产量,同时减少总体药物使用。数字性健康聊天机器人增强了患者教育、暴露前预防依从性和更安全性行为,尽管数据隐私保护和偏倚缓解仍然是优先事项。在孕期,先进的深度学习模型在超声图像上对胎儿解剖结构进行分割时,与专家标注相比,重叠率超过90%,并且能够以超过93%的灵敏度检测异常。预测性生物识别工具能够在一周内准确估计孕周,在约190克范围内估计胎儿体重。在产后阶段,人工智能驱动的决策支持系统和对话代理能够促进抑郁症的早期筛查,并指导后续护理。可穿戴传感器能够远程监测产妇的血压和心率,以支持及时的临床干预。在新生儿护理方面,心率观察(HeRO)系统已将极低出生体重儿的死亡率降低了约20%,其他人工智能模型能够预测新生儿败血症、早产儿视网膜病变和坏死性小肠结肠炎,曲线下面积值高于0.80。从运营角度来看,自动化超声工作流程每帧大约14毫秒就能提供生物测量数据,体外受精实验室的动态调度降低了工作人员的工作量和每个周期的成本。孕妇家庭监测平台使孕产妇死亡率和先兆子痫发病率降低了7%至11%。尽管取得了这些进展,但大多数证据来自回顾性、单中心研究,外部验证有限。资源匮乏地区,尤其是撒哈拉以南非洲地区,代表性仍然不足,很少有人工智能解决方案完全嵌入电子健康记录中。人工智能对围产期护理具有变革性的前景,但需要前瞻性多中心验证、以公平为中心的设计、强有力的治理、透明的公平性审核以及无缝的电子健康记录整合,才能将这些创新转化为常规实践并改善孕产妇和新生儿结局。