Suppr超能文献

边缘成像:利用立体X射线断层扫描绘制物体角落和边缘

Imaging on the Edge: Mapping Object Corners and Edges with Stereo X-Ray Tomography.

作者信息

Shang Zhenduo, Blumensath Thomas

机构信息

Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK.

出版信息

Tomography. 2025 Jul 29;11(8):84. doi: 10.3390/tomography11080084.

Abstract

X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios requiring high temporal resolution, such as the study of dynamic processes. Inspired by stereo vision, we previously developed stereo X-ray imaging methods that operate with only two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers at significantly faster temporal resolutions. Building on our prior work, this paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object corners, eliminating the need for internal fiducial markers. This is particularly relevant for deformation measurement of manufactured components under load. Additionally, we explore model training using synthetic data when annotated real data is unavailable. We show that the proposed method can reliably reconstruct sharp corners in 3D using only two X-ray projections. The results confirm the method's applicability to real-world stereo X-ray images without relying on annotated real training datasets. Our approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics key characteristics of real data, thereby expanding the method's applicability in scenarios with limited training resources.

摘要

X射线计算机断层扫描(XCT)是一种用于容积成像的强大工具,它通过大量单独的X射线投影图像生成三维(3D)图像。然而,收集所需数量的低噪声投影图像非常耗时,限制了其在需要高时间分辨率的场景中的应用,例如动态过程研究。受立体视觉的启发,我们之前开发了立体X射线成像方法,该方法仅通过两个X射线投影进行操作,能够以显著更快的时间分辨率对点和线基准标记进行3D重建。在我们之前工作的基础上,本文展示了使用立体X射线技术对尖锐物体角进行3D重建,无需内部基准标记。这对于负载下制造部件的变形测量尤为重要。此外,当没有注释的真实数据时,我们探索使用合成数据进行模型训练。我们表明,所提出的方法仅使用两个X射线投影就能可靠地在3D中重建尖锐角。结果证实了该方法在不依赖注释的真实训练数据集的情况下对真实世界立体X射线图像的适用性。我们的方法能够使用模拟真实数据关键特征的合成训练数据进行立体X射线3D重建,从而扩大了该方法在训练资源有限场景中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82ac/12390524/e2504817fc2a/tomography-11-00084-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验